Concept explainers
A projectile is fired from the origin with angle of elevation α and initial speed v0. Assuming that air resistance is negligible and that the only force acting on the projectile is gravity, g. we showed m Example 13.4.5 that the position
We also showed that the maximum horizontal distance of the projectile is achieved when α = 45° and in this case the range is.
(a) At what angle should the projectile he tired to achieve maximum height and what is the maximum height?
(b) Fix the initial speed is r0 and consider the parabola x2 + 2Ry – R2 = 0, whose graph is shown in the figure at the left Show that the projectile can hit any target inside or on the boundary of the region hounded by the parabola and the x-axis, and that it can't hit any target outside this region.
FIGURE FOR PROBLEM 3
(c) Suppose that the gun is elevated to an angle of inclination α in order to aim at a target that is suspended at a height h directly over a point D units downrange (sec the figure below). The target is released at the instant the gun is fired. Show that the projectile always hits the target, regardless of the value v0, provided the projectile docs not hit the ground “before” D.
Trending nowThis is a popular solution!
Chapter 13 Solutions
Multivariable Calculus
- ||A||=23 45° Find the EXACT components of the vector above using the angle shown.arrow_forwardGiven ƒ = (10, -10) and q = (-8, −7), find ||ƒ— q|| and dƒ-9. Give EXACT answers. You do NOT have to simplify your radicals!arrow_forwardFind a vector (u) with magnitude 7 in the direction of v = (2,4) Give EXACT answer. You do NOT have to simplify your radicals!arrow_forward
- Given g = (-5, 10) and u = (5, 2), find -4ğ - 6.arrow_forwardGiven the vector v→=⟨3,-5⟩, find the magnitude and angle in which the vector points (measured in radians counterclockwise from the positive x-axis and 0≤θ<2π). Round each decimal number to two places.arrow_forwardplease include radicals in answerarrow_forward
- 3 4/3 3213 + 8 for 1 ≤x≤8. Find the length of the curve y=xarrow_forwardGiven that the outward flux of a vector field through the sphere of radius r centered at the origin is 5(1 cos(2r)) sin(r), and D is the value of the divergence of the vector field at the origin, the value of sin (2D) is -0.998 0.616 0.963 0.486 0.835 -0.070 -0.668 -0.129arrow_forward10 The hypotenuse of a right triangle has one end at the origin and one end on the curve y = Express the area of the triangle as a function of x. A(x) =arrow_forward
- Trigonometry (MindTap Course List)TrigonometryISBN:9781305652224Author:Charles P. McKeague, Mark D. TurnerPublisher:Cengage LearningAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning