Concept explainers
(a)
The Earth’s orbital speed at aphelion.
(a)
Answer to Problem 39AP
The Earth’s orbital speed at aphelion is
Explanation of Solution
The maximum distance from the Earth to the Sun is
By the conservation of
Here,
The angular momentum at perihelion is given as,
Here,
The angular momentum at aphelion is given as,
Here,
Substitute
Substitute
Conclusion:
Therefore, the Earth’s orbital speed at aphelion is
(b)
The kinetic and potential energy of the Earth-Sun system at perihelion.
(b)
Answer to Problem 39AP
The kinetic of the Earth-Sun system at perihelion is
Explanation of Solution
Formula to calculate the kinetic energy of the Earth-Sun system at perihelion is,
Substitute
Formula to calculate the potential energy of the Earth-Sun system at perihelion is,
Here,
Substitute
Conclusion:
Therefore, the potential energy of the Earth-Sun system at perihelion is
(c)
The kinetic and potential energy of the Earth-Sun system at aphelion.
(c)
Answer to Problem 39AP
The kinetic of the Earth-Sun system at aphelion is
Explanation of Solution
Formula to calculate the kinetic energy of the Earth-Sun system at aphelion is,
Substitute
Formula to calculate the potential energy of the Earth-Sun system at aphelion is,
Here,
Substitute
Conclusion:
Therefore, the potential energy of the Earth-Sun system at aphelion is
(d)
Whether the total energy of the Earth-Sun system constant.
(d)
Answer to Problem 39AP
Yes, the total energy of the Earth-Sun system is remains constant.
Explanation of Solution
Formula to calculate the total energy of the Earth-Sun system at aphelion is,
Here,
Substitute
Formula to calculate the total energy of the Earth-Sun system at perihelion is,
Here,
Substitute
Mathematically proved, the sum of kinetic energy and potential energy of the Earth–Sun system at perihelion is identical to the sum of kinetic energy and potential energy of the Earth–Sun system at aphelion. So the total energy of the Earth-Sun system is constant.
Conclusion:
Therefore, yes, the total energy of the Earth-Sun system remains constant.
Want to see more full solutions like this?
Chapter 13 Solutions
PHYSICS FOR SCI. & ENGR(LL W/WEBASSIGN)
- Plastic beads can often carry a small charge and therefore can generate electric fields. Three beads are oriented such that 92 is between q₁ and 93. The sum of the charge on 9₁ and 92 is 9₁ + 92 = −2.9 µС, and the net charge of the system of all three beads is zero. E field lines 93 92 What charge does each bead carry? 91 92 -1.45 What is the net charge of the system? What charges have to be equal? μC 2.9 ✓ What is the net charge of the system? What charges have to be equal? μC 93 2.9 μεarrow_forwardNo chatgpt pls will upvotearrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.49 xm to the right of the 2.50 μC chargearrow_forward
- Find the electric field at the location of q, in the figure below, given that q₁ =9c9d = +4.60 nC, q = -1.00 nC, and the square is 20.0 cm on a side. (The +x axis is directed to the right.) magnitude direction 2500 x What symmetries can you take advantage of? What charges are the same magnitude and the same distance away? N/C 226 × How does charge sign affect the direction of the electric field? counterclockwise from the +x-axis 9a 9b % 9 9darrow_forwardwould 0.215 be the answer for part b?arrow_forwardSuppose a toy boat moves in a pool at at a speed given by v=1.0 meter per second at t=0, and that the boat is subject to viscous damping. The damping on the boat causes the rate of speed loss to be given by the expression dv/dt=-2v. How fast will the boat be traveling after 1 second? 3 seconds? 10 seconds? Use separation of variables to solve this.arrow_forward
- What functional form do you expect to describe the motion of a vibrating membrane without damping and why?arrow_forwardIf speed is tripled, how much larger will air drag become for an object? Show the math.arrow_forwardWhat does it tell us about factors on which air drag depends if it is proportional to speed squared?arrow_forward
- What is the net charge on a sphere that has the following? x (a) 5.75 × 106 electrons and 8.49 × 106 protons 4.39e-13 What is the charge of an electron? What is the charge of a proton? C (b) 200 electrons and 109 protons 1.60e-10 What is the charge of an electron? What is the charge of a proton? Carrow_forwardA spider begins to spin a web by first hanging from a ceiling by his fine, silk fiber. He has a mass of 0.025 kg and a charge of 3.5 μC. A second spider with a charge of 4.2 μC rests in her own web exactly 2.1 m vertically below the first spider. (a) What is the magnitude of the electric field due to the charge on the second spider at the position of the first spider? 8.57e3 N/C (b) What is the tension in the silk fiber above the first spider? 0.125 How does the electric field relate to the force? How do you calculate the net force? Narrow_forwardPoint charges of 6.50 μC and -2.50 μC are placed 0.300 m apart. (Assume the negative charge is located to the right of the positive charge. Include the sign of the value in your answers.) (a) Where can a third charge be placed so that the net force on it is zero? 0.49 m to the right of the -2.50 μC charge (b) What if both charges are positive? 0.185 xm to the right of the 2.50 μC chargearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice UniversityPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning