
EBK COLLEGE PHYSICS
2nd Edition
ISBN: 9780134605500
Author: ETKINA
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 33P
To determine
The gauge pressure on the sides of a container halfway from the top and at the bottom when the cylindrical container is full with the water whose volume is
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
If the room’s radius is 16.2 m, at what minimum linear speed does Quicksilver need to run to stay on the walls without sliding down? Assume the coefficient of friction between Quicksilver and the wall is 0.236.
In the comics Thor flies by spinning his hammer really fast from a leather strap at the end of the handle, letting go, then grabbing it and having it pull him. If Thor wants to reach escape velocity (velocity needed to leave Earth’s atmosphere), he will need the linear velocity of the center of mass of the hammer to be 11,200 m/s. A) If the distance from the end of the strap to the center of the hammer is 0.334 m, what angular velocity does Thor need to spin his hammer at to reach escape velocity? b) If the hammer starts from rest what angular acceleration does Thor need to reach that angular velocity in 4.16 s? c) While the hammer is spinning at its maximum speed what impossibly large tension does the leather strap, which the hammer is spinning by, exert when the hammer is at its lowest point? The hammer has a total mass of 20.0kg.
The car goes from driving straight to spinning at 10.6 rev/min in 0.257 s with a radius of 12.2 m. The angular accleration is 4.28 rad/s^2. During this flip Barbie stays firmly seated in the car’s seat. Barbie has a mass of 58.0 kg, what is her normal force at the top of the loop?
Chapter 13 Solutions
EBK COLLEGE PHYSICS
Ch. 13 - Review Question 13.1 How would you determine the...Ch. 13 - Prob. 2RQCh. 13 - Prob. 3RQCh. 13 - Prob. 4RQCh. 13 - Review Question 13.5 Why does a fluid exert an...Ch. 13 - Review Question 13.6 Two objects have the same...Ch. 13 - Rank in increasing order the pressure that the...Ch. 13 - 2. Choose a device that reduces the pressure...Ch. 13 - Prob. 3MCQCh. 13 - Prob. 4MCQ
Ch. 13 - Prob. 5MCQCh. 13 - How do we know that a fluid exerts an upward force...Ch. 13 - Prob. 7MCQCh. 13 - Prob. 8MCQCh. 13 - Prob. 9MCQCh. 13 - 10. A wooden cube is floating in a fish tank that...Ch. 13 - 11. Two identical beakers with the same amount of...Ch. 13 - A piece of steel and a bag of feathers are...Ch. 13 - A metal boat floats in a pool. What happens to the...Ch. 13 - When a boat sails from seawater to fresh water,...Ch. 13 - Three blocks are floating in oil as shown in...Ch. 13 - Prob. 16MCQCh. 13 - 17. Describe a method to measure the density of a...Ch. 13 - 18. How can you determine the density of air?
Ch. 13 - 20. Does air exert a net upward force or a net...Ch. 13 - 21. What causes the pressure that air exerts on a...Ch. 13 - 22. Why. when you fill a teapot with water, is the...Ch. 13 - What experimental evidence supports Pascals first...Ch. 13 - Fill a plastic cup to the very top with water. Put...Ch. 13 - 25. Why does a fluid exert a net upward force on...Ch. 13 - Describe how you could predict whether an object...Ch. 13 - 27. Why can you lift objects while in water that...Ch. 13 - 28. When placed in a lake, a solid object either...Ch. 13 - 30. Ice floats in water in a beaker. Will the...Ch. 13 - Prob. 31CQCh. 13 - Why do people sink in fresh water and in most...Ch. 13 - 34. A bucket filled to the top with water has a...Ch. 13 - Marjory thinks that the mass of a fluid above a...Ch. 13 - Prob. 36CQCh. 13 - A bucket filled with water has a piece of ice...Ch. 13 - Prob. 39CQCh. 13 - Determine the average density of Earth. What data...Ch. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - * BIO A diet decreases a persons mass by 5%....Ch. 13 - Prob. 5PCh. 13 - Prob. 6PCh. 13 - 7. Imagine that you have gelatin cut into three...Ch. 13 - An object made of material A has a mass of 90 kg...Ch. 13 - You have a steel ball that has a mass of 6.0 kg...Ch. 13 - * A material is made of molecules of mass 2.0 x...Ch. 13 - 11. You compress all the molecules described in...Ch. 13 - Prob. 13PCh. 13 - * Anita holds her physics textbook and complains...Ch. 13 - Prob. 15PCh. 13 - Prob. 16PCh. 13 - Hydraulic car lift You are designing a hydraulic...Ch. 13 - EST Force of air on forehead Estimate the force...Ch. 13 - You have a rubber pad with a handle attached to it...Ch. 13 - * EST Toy bow and arrow A child's toy arrow has a...Ch. 13 - Prob. 22PCh. 13 - Prob. 23PCh. 13 - Water reservoir and faucet The pressure at the top...Ch. 13 - Prob. 25PCh. 13 - 26. BIOEST Blood pressure Estimate the pressure of...Ch. 13 - Prob. 27PCh. 13 - 28. * Mountain climbing Determine the change in...Ch. 13 - Prob. 29PCh. 13 - 30. * A truck transporting chemicals has crashed,...Ch. 13 - 31. Drinking through a straw You are drinking...Ch. 13 - * More straw drinking While you are drinking...Ch. 13 - Prob. 33PCh. 13 - 34. * BIO EST Eardrum Estimate the net force on...Ch. 13 - 35. BIO Eardrum again You now go snorkeling. What...Ch. 13 - 36. Water and oil are poured into opposite sides...Ch. 13 - 37. * Examine the vertical cross section of the...Ch. 13 - 38. * A test tube of length L and cross-sectional...Ch. 13 - 39. Half of a 20-cm-tall beaker is filled with...Ch. 13 - Blaise Pascal found a seemingly paradoxical...Ch. 13 - 41. Four containers are filled with different...Ch. 13 - Prob. 42PCh. 13 - The reading of a barometer in your room in 780 mm...Ch. 13 - How long would Torricellis barometer have had to...Ch. 13 - Prob. 45PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Prob. 48PCh. 13 - Draw a force diagram for an object that is...Ch. 13 - 50. Draw a cubic object that is completely...Ch. 13 - Prob. 51PCh. 13 - * Four cubes of the same volume are made of...Ch. 13 - 53. * You place four identical cubes made of oak ...Ch. 13 - kg/m3) reaches the 10-cm mark. You place an oak...Ch. 13 - 55. * A 30-g ball with volume is attached to the...Ch. 13 - Prob. 57PCh. 13 - Prob. 58PCh. 13 - 59. * You have four objects at rest, each of the...Ch. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - 62. * A pin through a hole in the middle supports...Ch. 13 - 63. * A meter stick is supported by a pin through...Ch. 13 - Goose on a lake A 3.6-kg goose floats on a lake...Ch. 13 - 1 floats in seawater of density 2. What fraction...Ch. 13 - 66 * Floating in seawater A person of average...Ch. 13 - kg/m3 when it is fully submerged in water of...Ch. 13 - 68. * Snorkeling A 60-kg snorkeler (including...Ch. 13 - 69. * A helium balloon of volume has a total mass...Ch. 13 - Prob. 70PCh. 13 - Prob. 71PCh. 13 - * Crown composition A crown is made of gold and...Ch. 13 - Prob. 73PCh. 13 - Prob. 74PCh. 13 - 75. * You hang a steel ball on a string above a...Ch. 13 - * One end of a light spring is attached to a...Ch. 13 - Prob. 77PCh. 13 - Prob. 78PCh. 13 - Prob. 79PCh. 13 - EST Iceberg Icebergs are large pieces of...Ch. 13 - Prob. 81PCh. 13 - 82 ** To increase the effect of the buoyant force...Ch. 13 - Prob. 83GPCh. 13 - Prob. 84GPCh. 13 - Prob. 85GPCh. 13 - 86. * EST Bursting a wine barrel Pascal placed a...Ch. 13 - Prob. 87GPCh. 13 - Prob. 88GPCh. 13 - 90. ** You have an empty water bottle. Predict how...Ch. 13 - ** BIO Flexible bladder helps fish sink or rise A...Ch. 13 - * Plane lands on Nimitz aircraft carrier When a...Ch. 13 - Derive an equation for determining the unknown...Ch. 13 - Prob. 94RPPCh. 13 - Prob. 95RPPCh. 13 - 96. As Musimu descends, the buoyant force that the...Ch. 13 - Prob. 97RPPCh. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...Ch. 13 - Lakes freeze from top down we all know that ice...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a hoop of radius R and mass M rolling without slipping. Which form of kinetic energy is larger, translational or rotational?arrow_forwardA roller-coaster vehicle has a mass of 571 kg when fully loaded with passengers (see figure). A) If the vehicle has a speed of 22.5 m/s at point A, what is the force of the track on the vehicle at this point? B) What is the maximum speed the vehicle can have at point B, in order for gravity to hold it on the track?arrow_forwardThis one wheeled motorcycle’s wheel maximum angular velocity was about 430 rev/min. Given that it’s radius was 0.920 m, what was the largest linear velocity of the monowheel?The monowheel could not accelerate fast or the rider would start spinning inside (this is called "gerbiling"). The maximum angular acceleration was 10.9 rad/s2. How long, in seconds, would it take it to hit maximum speed from rest?arrow_forward
- If points a and b are connected by a wire with negligible resistance, find the magnitude of the current in the 12.0 V battery.arrow_forwardConsider the two pucks shown in the figure. As they move towards each other, the momentum of each puck is equal in magnitude and opposite in direction. Given that v kinetic energy of the system is converted to internal energy? 30.0° 130.0 = green 11.0 m/s, and m blue is 25.0% greater than m 'green' what are the final speeds of each puck (in m/s), if 1½-½ t thearrow_forwardConsider the blocks on the curved ramp as seen in the figure. The blocks have masses m₁ = 2.00 kg and m₂ = 3.60 kg, and are initially at rest. The blocks are allowed to slide down the ramp and they then undergo a head-on, elastic collision on the flat portion. Determine the heights (in m) to which m₁ and m2 rise on the curved portion of the ramp after the collision. Assume the ramp is frictionless, and h 4.40 m. m2 = m₁ m hm1 hm2 m iarrow_forward
- A 3.04-kg steel ball strikes a massive wall at 10.0 m/s at an angle of 0 = 60.0° with the plane of the wall. It bounces off the wall with the same speed and angle (see the figure below). If the ball is in contact with the wall for 0.234 s, what is the average force exerted by the wall on the ball? magnitude direction ---Select--- ✓ N xarrow_forwardYou are in the early stages of an internship at NASA. Your supervisor has asked you to analyze emergency procedures for extravehicular activity (EVA), when the astronauts leave the International Space Station (ISS) to do repairs to its exterior or perform other tasks. In particular, the scenario you are studying is a failure of the manned-maneuvering unit (MMU), which is a nitrogen-propelled backpack that attaches to the astronaut's primary life support system (PLSS). In this scenario, the astronaut is floating directly away from the ISS and cannot use the failed MMU to get back. Therefore, the emergency plan is to take off the MMU and throw it in a direction directly away from the ISS, an action that will hopefully cause the astronaut to reverse direction and float back to the station. You have the following mass data provided to you: astronaut: 78.1 kg, spacesuit: 36.8 kg, MMU: 115 kg, PLSS: 145 kg. Based on tests performed by astronauts floating "weightless" inside the ISS, the most…arrow_forwardThree carts of masses m₁ = 4.50 kg, m₂ = 10.50 kg, and m3 = 3.00 kg move on a frictionless, horizontal track with speeds of V1 v1 13 m 12 mq m3 (a) Find the final velocity of the train of three carts. magnitude direction m/s |---Select--- ☑ (b) Does your answer require that all the carts collide and stick together at the same moment? ○ Yes Ο Νο = 6.00 m/s to the right, v₂ = 3.00 m/s to the right, and V3 = 6.00 m/s to the left, as shown below. Velcro couplers make the carts stick together after colliding.arrow_forward
- A girl launches a toy rocket from the ground. The engine experiences an average thrust of 5.26 N. The mass of the engine plus fuel before liftoff is 25.4 g, which includes fuel mass of 12.7 g. The engine fires for a total of 1.90 s. (Assume all the fuel is consumed.) (a) Calculate the average exhaust speed of the engine (in m/s). m/s (b) This engine is positioned in a rocket body of mass 70.0 g. What is the magnitude of the final velocity of the rocket (in m/s) if it were to be fired from rest in outer space with the same amount of fuel? Assume the fuel burns at a constant rate. m/sarrow_forwardTwo objects of masses m₁ 0.48 kg and m₂ = 0.86 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k 260 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.4 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b). (Let the positive direction be to the right. Indicate the direction with the sign of your answer.) m/s V1 V2= m1 m/s k m2 a す。 k m2 m1 barrow_forwardSand from a stationary hopper falls on a moving conveyor belt at the rate of 4.90 kg/s as shown in the figure below. The conveyor belt is supported by frictionless rollers and moves at a constant speed of v = 0.710 m/s under the action of a constant horizontal external force F by the motor that drives the belt. Fext i (a) Find the sand's rate of change of momentum in the horizontal direction. (b) Find the force of friction exerted by the belt on the sand. (c) Find the external force ext' (d) Find the work done by F in 1 s. ext (e) Find the kinetic energy acquired by the falling sand each second due to the change in its horizontal motion. ext suppliedarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegeCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning

College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning

Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Physics for Scientists and Engineers with Modern ...
Physics
ISBN:9781337553292
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning