College Physics
11th Edition
ISBN: 9781305952300
Author: Raymond A. Serway, Chris Vuille
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 33P
Given that x = A cos (ωt) is a sinusoidal function of time, show that v (velocity) and a (acceleration) are also sinusoidal functions of time. Hint: Use Equations 13.6 and 13.2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
5
2
8. The power output, P, in Watts of an electric generator varies sinusoidally over the course of a day, with a
period of a day. The output is a minimum of 200 watts at midnight and the maximum output is 800 watts.
Let t be the number of hours since midnight.
What is the average power output? What's the amplitude?
Draw the graph of P against t over two days.
Find a formula for P n terms of t. Is it easier to modify a sine formula, or a cosine formula?
I can’t figure out how to work this one out:
A buoy floating in the ocean is bobbing in a simple harmonic motion with period 7 seconds and an amplitude 6 ft. It’s displacement d from sea level at time t=0 seconds is -6ft, and initially it moves upward.
Give the equation modeling the displacement d as a function of time t.
Considering an undamped, forced oscillator (b = 0), show that equation (1) is a solution of equation (2).
(1)
x = A cos(wt + ¢)
d²x
EF = ma → Fo sin wt – bOK – kx = m9
dt?
xp
dt
Use an amplitude given by the following equation. (Submit a file with a maximum size of 1 MB.)
Fo
A
V (w? - w,3)?
+ m
Chapter 13 Solutions
College Physics
Ch. 13.1 - A block on the end of a horizontal spring is...Ch. 13.1 - For a simple harmonic oscillator, which of the...Ch. 13.2 - When an object moving in simple harmonic motion is...Ch. 13.3 - An object of mass m is attached to a horizontal...Ch. 13.3 - Prob. 13.5QQCh. 13.4 - If the amplitude of a system moving in simple...Ch. 13.5 - A simple pendulum is suspended from the ceiling of...Ch. 13.5 - A pendulum dork depends on the period of a...Ch. 13.5 - The period of a simple pendulum is measured to be...Ch. 13 - An objectspring system undergoes simple harmonic...
Ch. 13 - If an objectspring system is hung vertically and...Ch. 13 - The spring in Figure CQ13.3 is stretched from its...Ch. 13 - If the spring constant shown in Figure CQ13.3 is...Ch. 13 - If the spring shown in Figure CQ13.3 is com...Ch. 13 - If a spring is cut in half, what happens to its...Ch. 13 - A pendulum bob is made from a sphere filled with...Ch. 13 - A block connected to a horizontal spring is in...Ch. 13 - (a) Is a bouncing ball an example of simple...Ch. 13 - If a grandfather clock were running slow, how...Ch. 13 - What happens to the speed of a wave on a string...Ch. 13 - Prob. 12CQCh. 13 - Waves are traveling on a uniform string under...Ch. 13 - Identify each of the following waves as either...Ch. 13 - A block, of mass m = 0.60 kg attached to a spring...Ch. 13 - A spring oriented vertically is attached to a hard...Ch. 13 - The force constant of a spring is 137 N/m. Find...Ch. 13 - A spring is hung from a ceiling, and an object...Ch. 13 - A biologist hangs a sample of mass 0.725 kg on a...Ch. 13 - An archer must exert a force of 375 N on the...Ch. 13 - A spring 1.50 m long with force constant 475 N/m...Ch. 13 - A block of mass m = 2.00 kg is attached to a...Ch. 13 - A slingshot consists of a light leather cup...Ch. 13 - An archer pulls her bowstring back 0.400 m by...Ch. 13 - A student pushes the 1.50-kg block in Figure...Ch. 13 - An automobile having a mass of 1.00 103 kg is...Ch. 13 - A 10.0-g bullet is fired into, and embeds itself...Ch. 13 - An object-spring system moving with simple...Ch. 13 - A horizontal block-spring system with the block on...Ch. 13 - A 0.250-kg block attached to a light spring...Ch. 13 - A block-spring system consists of a spring with...Ch. 13 - A 0.40-kg object connected to a light spring with...Ch. 13 - At an outdoor market, a bunch of bananas attached...Ch. 13 - A student stretches a spring, attaches a 1.00-kg...Ch. 13 - A horizontal spring attached to a wall has a force...Ch. 13 - An object moves uniformly around a circular path...Ch. 13 - The wheel in the simplified engine of Figure...Ch. 13 - The period of motion of an object-spring system is...Ch. 13 - A vertical spring stretches 3.9 cm when a 10.-g...Ch. 13 - When four people with a combined mass of 320 kg...Ch. 13 - The position of an object connected to a spring...Ch. 13 - A harmonic oscillator is described by the function...Ch. 13 - A 326-g object is attached to a spring and...Ch. 13 - An object executes simple harmonic motion with an...Ch. 13 - A 2.00-kg object on a frictionless horizontal...Ch. 13 - A spring of negligible mass stretches 3.00 cm from...Ch. 13 - Given that x = A cos (t) is a sinusoidal function...Ch. 13 - A man enters a tall tower, needing to know its...Ch. 13 - A simple pendulum has a length of 52.0 cm and...Ch. 13 - A seconds pendulum is one that moves through its...Ch. 13 - A clock is constructed so that it keeps perfect...Ch. 13 - A coat hanger of mass m = 0.238 kg oscillates on a...Ch. 13 - The free-fall acceleration on Mars is 3.7 m/s2....Ch. 13 - A simple pendulum is 5.00 in long. (a) What is the...Ch. 13 - The sinusoidal wave shown in Figure P13.41 is...Ch. 13 - An object attached to a spring vibrates with...Ch. 13 - Prob. 43PCh. 13 - The distance between two successive minima of a...Ch. 13 - A harmonic wave is traveling along a rope. It is...Ch. 13 - A bat can detect small objects, such as an insect,...Ch. 13 - Orchestra instruments are commonly tuned to match...Ch. 13 - Prob. 48PCh. 13 - Prob. 49PCh. 13 - Workers attach a 25.0-kg mass to one end of a...Ch. 13 - A piano siring of mass per unit length 5.00 103...Ch. 13 - A student taking a quiz finds on a reference sheet...Ch. 13 - Prob. 53PCh. 13 - An astronaut on the Moon wishes to measure the...Ch. 13 - A simple pendulum consists of a ball of mass 5.00...Ch. 13 - A string is 50.0 cm long and has a mass of 3.00 g....Ch. 13 - Tension is maintained in a string as in Figure...Ch. 13 - The elastic limit of a piece of steel wire is 2.70...Ch. 13 - A 2.65-kg power line running between two towers...Ch. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - The position of a 0.30-kg object attached to a...Ch. 13 - An object of mass 2.00 kg is oscillating freely on...Ch. 13 - Prob. 64APCh. 13 - A simple pendulum has mass 1.20 kg and length...Ch. 13 - A 0.500-kg block is released from rest and slides...Ch. 13 - A 3.00-kg object is fastened to a light spring,...Ch. 13 - A 5.00-g bullet moving with an initial speed of...Ch. 13 - A large block P executes horizontal simple...Ch. 13 - A spring in a toy gun has a spring constant of...Ch. 13 - A light balloon filled with helium of density...Ch. 13 - An object of mass m is connected to two rubber...Ch. 13 - Assume a hole is drilled through the center of the...Ch. 13 - Figure P13.74 shows a crude model of an insect...Ch. 13 - A 2.00-kg block hangs without vibrating at the end...Ch. 13 - A system consists of a vertical spring with force...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A physics department has a Foucault pendulum, a longperiod pendulum suspended from the ceiling. The pendulum has an electric circuit that keeps it oscillating with a constant amplitude. When the circuit is turned off, the oscillation amplitude decreases by 50% in 22 minutes. What is the pendulum’s time constant? How much additional time elapses before theamplitude decreases to 25% of its initial value?arrow_forwardQ.1 Consider the following equation of motion 2x + cx + 800x = 50 sin(10t) find the solution of the steady state response.arrow_forwardEx. 16 : A particle performing S.H.M. has a velocity of 10 m/s, when it crosses the mean position. If the amplitude of oscillation is 2 m, find the velocity when it is midway between mean and extreme position.arrow_forward
- The position 7 (in meters) of a particle of mass m (in kilograms) is described as two perpendicular oscillations that are out of phase with each other: 7 = rēi + yế2 = cos(wt)ěi + cos(wt + ø)ē2, where o is the constant phase angle difference. a. Show that the position 7 of the particle satisfies the harmonic oscillator equation -w?r. dt? Compute the particle's velocity v = dr/dt, dot product 7 · v, and angular momentum L = mĩ x v. Is the angular momentum constant in both magnitude and direction? b. Set w = 2 rad / s and ø = T/3 rad. Make a table with the following columns: t, x, y, Væ, Vy, and7· v. Put the units beside their respective variables and enclose the units inside the parentheses. Set the initial time to be to = 0 and use the spreadsheet to compute the values of xo, Yo, VOx, VOy, and ro · vo Write down the spreadsheet formula for the first xo, Yo, VOz, VOys and 7o - vo , assuming that the initial time to is spreadsheet cell A2.arrow_forwardThis is a multiple choice question, so you can just give the answer with the letter it corresponds with.arrow_forward13. A simple pendulum consists of a point mass m suspended by a (weightless) cord or rod of length l, as shown, and swinging in a vertical plane under the action of gravity. Show that for small oscillations (small 0), both 0 and r are sinusoidal functions of time, that is, the motion is simple harmonic. Hint: Write the differential equation F = ma for the particle m. sin 0 = 0 for small 0, and show that 0 = Asin wt is a solution of your equation. What are A and w? Use the approximation marrow_forward
- From a differential equations course: A mass that weight 6 lb stretches a spring 1in. The system is acted on by an external force 11* sin(19.5959*t) lb. If the mass is pushed up 4 in and then released, determine the position of the mass at any time t. Use 32ft/s2 as the acceleration due to gravity. Pay close attention to the units. NOTES: Answer should be a function u(t). The 'guess' when using the method of undetermined coefficients is: t(A*cos(19.5959*t) + B*sin(19.5959t)). I just have not been able to finish the MUC part to find the particular soluton to the Non-Homogeneous Equation. The general solution to the homogeneous equation is: u_c = C1*cos(19.5959t) + C2*sin(19.5959t)arrow_forwardMaps O New Tab 5. A pendulum consists of a solid sphere of radius R = 10.0 cm and mass M = 90.0 kg attached to a rod of mass m = 30.0 kg and length L. The pendulum swings freely about an axis o perpendicular to the rod and the solid sphere's center, as shown in the figure. If the pendulum is to have a period of 2.47 s for small oscillations. (a) what is the length of the rod L? (b) If the system is pulled aside to angle 0 = 67° and released, what is the maximum value for the angular velocity?arrow_forwardQ.1. A particle moves under the force F(x) = (x² - 6x) N, where x is in metres. For small displacements from the origin, what is the force constant in the simple harmonic motion approximation?arrow_forward
- 2.52.There is a whistle attached to each end of a 3.4m long stick. As shown in the picture on the right, the bar rotates at an angular speed of 20 rad/s in the horizontal plane with the line passing through the center of the bar as the axis. What is the maximum number of beats per second observed by a person far away from this bar? (However, the vibration frequency of the sound coming from the whistle is 99Hz, and the speed of sound is 340m/s.) N=rw=34m/ дан 20 rows/s w = 20 rad/sarrow_forwardDuring a relaxed walking pace, a person's leg can be thought of as a physical pendulum of length L that pivots about the hip. What is the relaxed walking frequency in Hz for a person whose leg is of length 1.387m. In this approximation, assume the leg is a uniform rod ("uniform" implying the leg has a uniform mass density along its length). Note: In the space below, please enter you numerical answer. Do not enter any units. If you enter units, your answer will be marked as incorrect.arrow_forwardA spring with spring constant k= 7 N/m is horizontal and has one end attached to a wall and the other end attached to a M = 4 kg mass. Suppose that the friction of the mass with the floor (i.e., the damping constant) is D = 1 N · s/m, and the forcing function is F(t) = 2 sin(4t). a. Find the long-term motion of the attached mass if initially the mass is at rest at the equilibrium position. That is, what remains of the solution after all exponentially decaying terms have effectively reached zero. Long-term motion: æ(t) = b. Find the long-term motion of the attached mass if initially the mass is pulled 0.1 metres away from the equilibrium position and is released. Long-term motion: æ(t) =arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningUniversity Physics (14th Edition)PhysicsISBN:9780133969290Author:Hugh D. Young, Roger A. FreedmanPublisher:PEARSONIntroduction To Quantum MechanicsPhysicsISBN:9781107189638Author:Griffiths, David J., Schroeter, Darrell F.Publisher:Cambridge University Press
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningLecture- Tutorials for Introductory AstronomyPhysicsISBN:9780321820464Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina BrissendenPublisher:Addison-WesleyCollege Physics: A Strategic Approach (4th Editio...PhysicsISBN:9780134609034Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart FieldPublisher:PEARSON
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
University Physics (14th Edition)
Physics
ISBN:9780133969290
Author:Hugh D. Young, Roger A. Freedman
Publisher:PEARSON
Introduction To Quantum Mechanics
Physics
ISBN:9781107189638
Author:Griffiths, David J., Schroeter, Darrell F.
Publisher:Cambridge University Press
Physics for Scientists and Engineers
Physics
ISBN:9781337553278
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Lecture- Tutorials for Introductory Astronomy
Physics
ISBN:9780321820464
Author:Edward E. Prather, Tim P. Slater, Jeff P. Adams, Gina Brissenden
Publisher:Addison-Wesley
College Physics: A Strategic Approach (4th Editio...
Physics
ISBN:9780134609034
Author:Randall D. Knight (Professor Emeritus), Brian Jones, Stuart Field
Publisher:PEARSON
What Are Sound Wave Properties? | Physics in Motion; Author: GPB Education;https://www.youtube.com/watch?v=GW6_U553sK8;License: Standard YouTube License, CC-BY