In Exercises 29—32, let f ( x ) = 3 x + 1 , , f ( x ) = 1 x , and h ( x ) = 2 − x . Find f ( 4 ) , q ( 4 ) , h ( 4 ) , g ( 2 + k ) and f ( ( 1 + k ) .
In Exercises 29—32, let f ( x ) = 3 x + 1 , , f ( x ) = 1 x , and h ( x ) = 2 − x . Find f ( 4 ) , q ( 4 ) , h ( 4 ) , g ( 2 + k ) and f ( ( 1 + k ) .
Solution Summary: The author explains that to find the value of f(a) for any given function, they replace x by a and simplify further.
(3) (20 points) Let F(x, y, z) = (y, z, x²z). Define
E = {(x, y, z) | x² + y² ≤ z ≤ 1, x ≤ 0}.
(a) (2 points) Calculate the divergence V. F.
(b) (4 points) Let D = {(x, y) | x² + y² ≤ 1, x ≤ 0} Without calculation, show that
the triple integral
√ (V · F) dV = √ 2²(1.
= x²(1 − x² - y²) dA.
E
(2) (22 points) Let F(x, y, z) = (x sin y, cos y, ―xy).
(a) (2 points) Calculate V. F.
(b) (6 points) Given a vector field
is everywhere defined with V
G₁(x, y, z) = *
G2(x, y, z) = −
G3(x, y, z) = 0.
0
0
F(x, y, z) = (F₁(x, y, z), F₂(x, y, z), F(x, y, z)) that
F = 0, let G = (G1, G2, G3) where
F₂(x,
y,
y, t) dt
- √ F³(x, t, 0) dt,
*
F1(x,
y, t) dt,
t) dt - √ F
Calculate G for the vector field F(x, y, z) = (x sin y, cos y, -xy).
Evaluate the following integral over the Region R.
(Answer accurate to 2 decimal places).
√ √(x + y) A
R
R = {(x, y) | 25 < x² + y² ≤ 36, x < 0}
Hint: The integral and Region is defined in rectangular coordinates.
Chapter 1 Solutions
Pearson eText for Precalculus: A Unit Circle Approach -- Instant Access (Pearson+)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
MFCS unit-1 || Part:1 || JNTU || Well formed formula || propositional calculus || truth tables; Author: Learn with Smily;https://www.youtube.com/watch?v=XV15Q4mCcHc;License: Standard YouTube License, CC-BY