Concept explainers
(a)
The maximum height gain by the space vehicle.
(a)

Answer to Problem 32AP
The maximum height gain by the space vehicle is
Explanation of Solution
The initial speed of the vehicle is
Formula to calculate the maximum height gain by the space vehicle by the conservation of energy is,
Here,
Formula to calculate the kinetic energy of the space vehicle at the Earth’s surface is,
Here,
Formula to calculate the potential energy of the space vehicle at the Earth’s surface is,
Here,
Formula to calculate the potential energy space vehicle at the altitude is,
Here,
The final kinetic energy of the space vehicle is zero because the space vehicle is rest at that point.
Substitute
Further solve the above expression.
Write the expression for the acceleration due to gravity.
Here,
Substitute
Conclusion:
Therefore, the maximum height gain by the space vehicle is
(b)
The speed of the meteorite to strike the Earth.
(b)

Answer to Problem 32AP
The speed of the meteorite to strike the Earth is
Explanation of Solution
The initial speed of the vehicle is
From equation (2), the expression for the speed is given as,
Here,
Further solve the above expression.
Substitute
Conclusion:
Therefore, the speed of the meteorite to strike the Earth is
(c)
The result from part (a) is consistent with
(c)

Answer to Problem 32AP
The result from part (a) is consistent with
Explanation of Solution
Consider a baseball is tossed up with an initial speed that is very small as compared to the escape speed.
Here,
As the initial speed that is very small. So the initial speed of the vehicle tends to be zero.
From part (a), the maximum height gain by the space vehicle is,
Substitute
Write the expression for the maximum height of the projectile motion of the baseball.
Here,
From maximum height of the projectile motion of the baseball, the value of angle of the projectile motion of the baseball should be
Substitute
From equations (3) and (4).
So, the maximum height gain by the space vehicle is consistent with
Conclusion:
Therefore, the result from part (a) is consistent with
Want to see more full solutions like this?
Chapter 13 Solutions
Bundle: Physics for Scientists and Engineers, Volume 2, Loose-leaf Version, 10th + WebAssign Printed Access Card, Single-Term
- Sketch the harmonic.arrow_forwardFor number 11 please sketch the harmonic on graphing paper.arrow_forward# E 94 20 13. Time a) What is the frequency of the above wave? b) What is the period? c) Highlight the second cycle d) Sketch the sine wave of the second harmonic of this wave % 7 & 5 6 7 8 * ∞ Y U 9 0 0 P 150arrow_forward
- Show work using graphing paperarrow_forwardCan someone help me answer this physics 2 questions. Thank you.arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 μF.) a C 3.00 με Hh. 6.00 με 20.0 με HE (a) Find the equivalent capacitance between points a and b. 5.92 HF (b) Calculate the charge on each capacitor, taking AV ab = 16.0 V. 20.0 uF capacitor 94.7 6.00 uF capacitor 67.6 32.14 3.00 µF capacitor capacitor C ☑ με με The 3 µF and 12.0 uF capacitors are in series and that combination is in parallel with the 6 μF capacitor. What quantity is the same for capacitors in parallel? μC 32.14 ☑ You are correct that the charge on this capacitor will be the same as the charge on the 3 μF capacitor. μCarrow_forward
- In the pivot assignment, we observed waves moving on a string stretched by hanging weights. We noticed that certain frequencies produced standing waves. One such situation is shown below: 0 ст Direct Measurement ©2015 Peter Bohacek I. 20 0 cm 10 20 30 40 50 60 70 80 90 100 Which Harmonic is this? Do NOT include units! What is the wavelength of this wave in cm with only no decimal places? If the speed of this wave is 2500 cm/s, what is the frequency of this harmonic (in Hz, with NO decimal places)?arrow_forwardFour capacitors are connected as shown in the figure below. (Let C = 12.0 µF.) A circuit consists of four capacitors. It begins at point a before the wire splits in two directions. On the upper split, there is a capacitor C followed by a 3.00 µF capacitor. On the lower split, there is a 6.00 µF capacitor. The two splits reconnect and are followed by a 20.0 µF capacitor, which is then followed by point b. (a) Find the equivalent capacitance between points a and b. µF(b) Calculate the charge on each capacitor, taking ΔVab = 16.0 V. 20.0 µF capacitor µC 6.00 µF capacitor µC 3.00 µF capacitor µC capacitor C µCarrow_forwardTwo conductors having net charges of +14.0 µC and -14.0 µC have a potential difference of 14.0 V between them. (a) Determine the capacitance of the system. F (b) What is the potential difference between the two conductors if the charges on each are increased to +196.0 µC and -196.0 µC? Varrow_forward
- Please see the attached image and answer the set of questions with proof.arrow_forwardHow, Please type the whole transcript correctly using comma and periods as needed. I have uploaded the picture of a video on YouTube. Thanks,arrow_forwardA spectra is a graph that has amplitude on the Y-axis and frequency on the X-axis. A harmonic spectra simply draws a vertical line at each frequency that a harmonic would be produced. The height of the line indicates the amplitude at which that harmonic would be produced. If the Fo of a sound is 125 Hz, please sketch a spectra (amplitude on the Y axis, frequency on the X axis) of the harmonic series up to the 4th harmonic. Include actual values on Y and X axis.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 3PhysicsISBN:9781938168185Author:William Moebs, Jeff SannyPublisher:OpenStaxPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning





