DIFF EQUAT W/BOUNDAR >PRINT UPGRADE<
9th Edition
ISBN: 9781337810906
Author: ZILL
Publisher: CENGAGE L
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.3, Problem 31E
To determine
To explain: Why we should expect
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Use the method of undetermined coefficients to solve the given nonhomogeneous system.
dx
dt
=
2x + 3y − 8
dy
dt
=
−x − 2y + 6
X(t) =
As discussed in Section 8.3, the Markowitz model uses the variance of the portfolio as the measure of risk. However, variance includes deviations both below and above the mean return. Semivariance includes only deviations below the mean and is considered by many to be a better measure of risk.
(a)
Develop a model that minimizes semivariance for the Hauck Financial data given in the file HauckData with a required return of 10%.
Assume
that the five planning scenarios in the Hauck Financial Services model are equally likely to occur. Hint: Modify model (8.10)–(8.19). Define a variable ds for each scenario and let
ds ≥ R − Rs
with
ds ≥ 0.
Then make the objective function:
Min
1
5
5
s = 1
ds2.
Let
FS = proportion of portfolio invested in the foreign stock mutual fund
IB = proportion of portfolio invested in the intermediate-term bond fund
LG = proportion of portfolio invested in the large-cap growth fund
LV = proportion of portfolio invested in the large-cap value fund…
Calculus lll
May I please have the blank lines completed, and final statement defined as a result?
Thank you for the support!
Chapter 1 Solutions
DIFF EQUAT W/BOUNDAR >PRINT UPGRADE<
Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 18 state the order of the given...Ch. 1.1 - In Problems 9 and 10 determine whether the given...Ch. 1.1 - In Problems 9 and 10 determine whether the given...
Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1114 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 1518 verify that the indicated...Ch. 1.1 - In Problems 19 and 20 verify that the indicated...Ch. 1.1 - In Problems 19 and 20 verify that the indicated...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2124 verify that the indicated family...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - In Problems 2528 use (12) to verify that the...Ch. 1.1 - Prob. 28ECh. 1.1 - Verify that the piecewise-defined function...Ch. 1.1 - In Example 7 we saw that y=1(x)=25x2 and...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 31-34 find values of m so that the...Ch. 1.1 - In Problems 35 and 36 find values of m so that the...Ch. 1.1 - In Problems 35 and 36 find values of m so that the...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - In Problems 3740 use the concept that y = c, x ...Ch. 1.1 - Prob. 41ECh. 1.1 - In Problems 41 and 42 verify that the indicated...Ch. 1.1 - Make up a differential equation that does not...Ch. 1.1 - Make up a differential equation that you feel...Ch. 1.1 - What function do you know from calculus is such...Ch. 1.1 - What function (or functions) do you know from...Ch. 1.1 - The function y = sin x is an explicit solution of...Ch. 1.1 - Discuss why it makes intuitive sense to presume...Ch. 1.1 - Prob. 49ECh. 1.1 - Prob. 50ECh. 1.1 - The graphs of members of the one-parameter family...Ch. 1.1 - Prob. 52ECh. 1.1 - Prob. 53ECh. 1.1 - Prob. 54ECh. 1.1 - Prob. 55ECh. 1.1 - Prob. 56ECh. 1.1 - The normal form (5) of an nth-order differential...Ch. 1.1 - Find a linear second-order differential equation...Ch. 1.1 - Consider the differential equation dy/dx = ex2....Ch. 1.1 - Consider the differential equation dy/dx = 5 y....Ch. 1.1 - Prob. 61ECh. 1.1 - Consider the differential equation y = y2 + 4. (a)...Ch. 1.2 - In Problems 1 and 2, y = 1/(1 + c1ex) is a...Ch. 1.2 - In Problems 1 and 2, y = 1/(1 + c1ex) is a...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 36, y = 1/(x2 + c) is a one-parameter...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 710, x = c1 cos t + c2 sin t is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 1114, y = c1ex + c2ex is a...Ch. 1.2 - In Problems 15 and 16 determine by inspection at...Ch. 1.2 - In Problems 15 and 16 determine by inspection at...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - Prob. 20ECh. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - Prob. 22ECh. 1.2 - Prob. 23ECh. 1.2 - In Problems 1724 determine a region of the...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - Prob. 27ECh. 1.2 - In Problems 2528 determine whether Theorem 1.2.1...Ch. 1.2 - (a) By inspection find a one-parameter family of...Ch. 1.2 - (a) Verify that y = tan (x + c) is a one-parameter...Ch. 1.2 - (a) Verify that y = 1 /(x + c) is a one-parameter...Ch. 1.2 - Prob. 32ECh. 1.2 - (a) Verify that 3x2 y2 = c is a one-parameter...Ch. 1.2 - Prob. 34ECh. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - In Problems 3538 the graph of a member of a family...Ch. 1.2 - Prob. 39ECh. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - Prob. 43ECh. 1.2 - In Problems 3944, y = c1 cos 2x + c2 sin 2x is a...Ch. 1.2 - Prob. 45ECh. 1.2 - In Problems 45 and 46 use Problem 55 in Exercises...Ch. 1.2 - Consider the initial-value problem y = x 2y, y(0)...Ch. 1.2 - Show that x=0y1t3+1dt is an implicit solution of...Ch. 1.2 - Prob. 49ECh. 1.2 - Prob. 50ECh. 1.2 - Prob. 51ECh. 1.3 - Under the same assumptions that underlie the model...Ch. 1.3 - The population model given in (1) fails to take...Ch. 1.3 - Using the concept of net rate introduced in...Ch. 1.3 - Modify the model in Problem 3 for net rate at...Ch. 1.3 - A cup of coffee cools according to Newtons law of...Ch. 1.3 - The ambient temperature Tm in (3) could be a...Ch. 1.3 - Suppose a student carrying a flu virus returns to...Ch. 1.3 - At a time denoted as t = 0 a technological...Ch. 1.3 - Prob. 9ECh. 1.3 - Prob. 10ECh. 1.3 - What is the differential equation in Problem 10,...Ch. 1.3 - Prob. 12ECh. 1.3 - Suppose water is leaking from a tank through a...Ch. 1.3 - The right-circular conical tank shown in Figure...Ch. 1.3 - A series circuit contains a resistor and an...Ch. 1.3 - A series circuit contains a resistor and a...Ch. 1.3 - For high-speed motion through the airsuch as the...Ch. 1.3 - A cylindrical barrel s feet in diameter of weight...Ch. 1.3 - After a mass m is attached to a spring, it...Ch. 1.3 - In Problem 19, what is a differential equation for...Ch. 1.3 - Prob. 21ECh. 1.3 - In Problem 21, the mass m(t) is the sum of three...Ch. 1.3 - By Newtons universal law of gravitation the...Ch. 1.3 - Suppose a hole is drilled through the center of...Ch. 1.3 - Prob. 25ECh. 1.3 - Prob. 26ECh. 1.3 - Infusion of a Drug A drug is infused into a...Ch. 1.3 - Tractrix A motorboat starts at the origin and...Ch. 1.3 - Reflecting surface Assume that when the plane...Ch. 1.3 - Prob. 30ECh. 1.3 - Prob. 31ECh. 1.3 - Prob. 32ECh. 1.3 - Prob. 33ECh. 1.3 - Prob. 34ECh. 1.3 - Prob. 35ECh. 1.3 - Prob. 36ECh. 1.3 - Let It snow The snowplow problem is a classic and...Ch. 1.3 - Population Dynamics Suppose that dP/dt = 0.15 P(t)...Ch. 1.3 - Prob. 39ECh. 1.3 - Prob. 40ECh. 1 - In Problems 1 and 2 fill in the blank and then...Ch. 1 - In Problems 1 and 2 fill in the blank and then...Ch. 1 - In Problems 3 and 4 fill in the blank and then...Ch. 1 - Prob. 4RECh. 1 - Prob. 5RECh. 1 - In Problems 5 and 6 compute y and y and then...Ch. 1 - Prob. 7RECh. 1 - Prob. 8RECh. 1 - Prob. 9RECh. 1 - Prob. 10RECh. 1 - Prob. 11RECh. 1 - Prob. 12RECh. 1 - Prob. 13RECh. 1 - Prob. 14RECh. 1 - In Problems 15 and 16 interpret each statement as...Ch. 1 - Prob. 16RECh. 1 - Prob. 17RECh. 1 - (a) Verify that the one-parameter family y2 2y =...Ch. 1 - Prob. 19RECh. 1 - Suppose that y(x) denotes a solution of the...Ch. 1 - Prob. 21RECh. 1 - Prob. 22RECh. 1 - Prob. 23RECh. 1 - Prob. 24RECh. 1 - Prob. 25RECh. 1 - Prob. 26RECh. 1 - Prob. 27RECh. 1 - Prob. 28RECh. 1 - Prob. 29RECh. 1 - In Problems 2730 use (12) of Section 1.1 to verify...Ch. 1 - Prob. 31RECh. 1 - Prob. 32RECh. 1 - Prob. 33RECh. 1 - Prob. 34RECh. 1 - Prob. 35RECh. 1 - Prob. 36RECh. 1 - In Problems 3538, y = c1e3x + c2ex 2x is a...Ch. 1 - Prob. 38RECh. 1 - Prob. 39RECh. 1 - Prob. 40RE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- For each month of the year, Taylor collected the average high temperatures in Jackson, Mississippi. He used the data to create the histogram shown. Which set of data did he use to create the histogram? A 55, 60, 64, 72, 73, 75, 77, 81, 83, 91, 91, 92\ 55,\ 60,\ 64,\ 72,\ 73,\ 75,\ 77,\ 81,\ 83,\ 91,\ 91,\ 92 55, 60, 64, 72, 73, 75, 77, 81, 83, 91, 91, 92 B 55, 57, 60, 65, 70, 71, 78, 79, 85, 86, 88, 91\ 55,\ 57,\ 60,\ 65,\ 70,\ 71,\ 78,\ 79,\ 85,\ 86,\ 88,\ 91 55, 57, 60, 65, 70, 71, 78, 79, 85, 86, 88, 91 C 55, 60, 63, 64, 65, 71, 83, 87, 88, 88, 89, 93\ 55,\ 60,\ 63,\ 64,\ 65,\ 71,\ 83,\ 87,\ 88,\ 88,\ 89,\ 93 55, 60, 63, 64, 65, 71, 83, 87, 88, 88, 89, 93 D 55, 58, 60, 66, 68, 75, 77, 82, 86, 89, 91, 91\ 55,\ 58,\ 60,\ 66,\ 68,\ 75,\ 77,\ 82,\ 86,\ 89,\ 91,\ 91 55, 58, 60, 66, 68, 75, 77, 82, 86, 89, 91, 91arrow_forwardIn this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forwardProblem 4. Margrabe formula and the Greeks (20 pts) In the homework, we determined the Margrabe formula for the price of an option allowing you to swap an x-stock for a y-stock at time T. For stocks with initial values xo, yo, common volatility σ and correlation p, the formula was given by Fo=yo (d+)-x0Þ(d_), where In (±² Ꭲ d+ õ√T and σ = σ√√√2(1 - p). дго (a) We want to determine a "Greek" for ỡ on the option: find a formula for θα (b) Is дго θα positive or negative? (c) We consider a situation in which the correlation p between the two stocks increases: what can you say about the price Fo? (d) Assume that yo< xo and p = 1. What is the price of the option?arrow_forward
- The Course Name Real Analysis please Solve questions by Real Analysisarrow_forwardWe consider a 4-dimensional stock price model given (under P) by dẴ₁ = µ· Xt dt + йt · ΣdŴt where (W) is an n-dimensional Brownian motion, π = (0.02, 0.01, -0.02, 0.05), 0.2 0 0 0 0.3 0.4 0 0 Σ= -0.1 -4a За 0 0.2 0.4 -0.1 0.2) and a E R. We assume that ☑0 = (1, 1, 1, 1) and that the interest rate on the market is r = 0.02. (a) Give a condition on a that would make stock #3 be the one with largest volatility. (b) Find the diversification coefficient for this portfolio as a function of a. (c) Determine the maximum diversification coefficient d that you could reach by varying the value of a? 2arrow_forwardQuestion 1. Your manager asks you to explain why the Black-Scholes model may be inappro- priate for pricing options in practice. Give one reason that would substantiate this claim? Question 2. We consider stock #1 and stock #2 in the model of Problem 2. Your manager asks you to pick only one of them to invest in based on the model provided. Which one do you choose and why ? Question 3. Let (St) to be an asset modeled by the Black-Scholes SDE. Let Ft be the price at time t of a European put with maturity T and strike price K. Then, the discounted option price process (ert Ft) t20 is a martingale. True or False? (Explain your answer.) Question 4. You are considering pricing an American put option using a Black-Scholes model for the underlying stock. An explicit formula for the price doesn't exist. In just a few words (no more than 2 sentences), explain how you would proceed to price it. Question 5. We model a short rate with a Ho-Lee model drt = ln(1+t) dt +2dWt. Then the interest rate…arrow_forward
- In this problem, we consider a Brownian motion (W+) t≥0. We consider a stock model (St)t>0 given (under the measure P) by d.St 0.03 St dt + 0.2 St dwt, with So 2. We assume that the interest rate is r = 0.06. The purpose of this problem is to price an option on this stock (which we name cubic put). This option is European-type, with maturity 3 months (i.e. T = 0.25 years), and payoff given by F = (8-5)+ (a) Write the Stochastic Differential Equation satisfied by (St) under the risk-neutral measure Q. (You don't need to prove it, simply give the answer.) (b) Give the price of a regular European put on (St) with maturity 3 months and strike K = 2. (c) Let X = S. Find the Stochastic Differential Equation satisfied by the process (Xt) under the measure Q. (d) Find an explicit expression for X₁ = S3 under measure Q. (e) Using the results above, find the price of the cubic put option mentioned above. (f) Is the price in (e) the same as in question (b)? (Explain why.)arrow_forward3. Consider the polynomial equation 6-iz+7z² - iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forwardThe managing director of a consulting group has the accompanying monthly data on total overhead costs and professional labor hours to bill to clients. Complete parts a through c. Question content area bottom Part 1 a. Develop a simple linear regression model between billable hours and overhead costs. Overhead Costsequals=212495.2212495.2plus+left parenthesis 42.4857 right parenthesis42.485742.4857times×Billable Hours (Round the constant to one decimal place as needed. Round the coefficient to four decimal places as needed. Do not include the $ symbol in your answers.) Part 2 b. Interpret the coefficients of your regression model. Specifically, what does the fixed component of the model mean to the consulting firm? Interpret the fixed term, b 0b0, if appropriate. Choose the correct answer below. A. The value of b 0b0 is the predicted billable hours for an overhead cost of 0 dollars. B. It is not appropriate to interpret b 0b0, because its value…arrow_forward
- 3. Consider the polynomial equation 6-iz+7z2-iz³ +z = 0 for which the roots are 3i, -2i, -i, and i. (a) Verify the relations between this roots and the coefficients of the polynomial. (b) Find the annulus region in which the roots lie.arrow_forwardWrite the equation of the trigonometric function shown in the graph. LO 5 4 3 2 1 y -5 -5 4 8 8 500 -1 -2 -3 -4 -5 x 5 15л 5л 25л 15л 35π 5л 4 8 2 8 4 8arrow_forwardc) Using only Laplace transforms solve the following Samuelson model given below i.e., the second order difference equation (where yt is national income): - Yt+2 6yt+1+5y₁ = 0, if y₁ = 0 for t < 0, and y₁ = 0, y₁ = 1 1-e-s You may use without proof that L-1[s(1-re-s)] = f(t) = r² for n ≤tarrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal Littell
- College Algebra (MindTap Course List)AlgebraISBN:9781305652231Author:R. David Gustafson, Jeff HughesPublisher:Cengage LearningLinear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage Learning
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage


Algebra: Structure And Method, Book 1
Algebra
ISBN:9780395977224
Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. Cole
Publisher:McDougal Littell


College Algebra (MindTap Course List)
Algebra
ISBN:9781305652231
Author:R. David Gustafson, Jeff Hughes
Publisher:Cengage Learning

Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
What is a Linear Equation in One Variable?; Author: Don't Memorise;https://www.youtube.com/watch?v=lDOYdBgtnjY;License: Standard YouTube License, CC-BY
Linear Equation | Solving Linear Equations | What is Linear Equation in one variable ?; Author: Najam Academy;https://www.youtube.com/watch?v=tHm3X_Ta_iE;License: Standard YouTube License, CC-BY