
Numerical Analysis, Books A La Carte Edition (3rd Edition)
3rd Edition
ISBN: 9780134697338
Author: Timothy Sauer
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 1.3, Problem 2E
(a)
To determine
The backward and forward errors of
(b)
To determine
The backward and forward errors of
(c)
To determine
The backward and forward errors of
(d)
To determine
The backward and forward errors of
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Page <
1
of 2
-
ZOOM +
1) a) Find a matrix P such that PT AP orthogonally diagonalizes the following matrix
A.
= [{² 1]
A =
b) Verify that PT AP gives the correct diagonal form.
2
01
-2
3
2) Given the following matrices A =
-1
0
1] an
and B =
0
1
-3
2
find the following matrices:
a) (AB) b) (BA)T
3) Find the inverse of the following matrix A using Gauss-Jordan elimination or
adjoint of the matrix and check the correctness of your answer (Hint: AA¯¹ = I).
[1 1 1
A = 3 5 4
L3 6 5
4) Solve the following system of linear equations using any one of Cramer's Rule,
Gaussian Elimination, Gauss-Jordan Elimination or Inverse Matrix methods and
check the correctness of your answer.
4x-y-z=1
2x + 2y + 3z = 10
5x-2y-2z = -1
5) a) Describe the zero vector and the additive inverse of a vector in the vector
space, M3,3.
b) Determine if the following set S is a subspace of M3,3 with the standard
operations. Show all appropriate supporting work.
13) Let U = {j, k, l, m, n, o, p} be the universal set. Let V = {m, o,p), W = {l,o, k}, and X = {j,k). List the elements of
the following sets and the cardinal number of each set.
a) W° and n(W)
b) (VUW) and n((V U W)')
c) VUWUX and n(V U W UX)
d) vnWnX and n(V WnX)
9) Use the Venn Diagram given below to determine the number elements in each of the following sets.
a) n(A).
b) n(A° UBC).
U
B
oh
a
k
gy
ท
W
z r
e t
་
C
Chapter 1 Solutions
Numerical Analysis, Books A La Carte Edition (3rd Edition)
Ch. 1.1 - Use the Intermediate Value Theorem to find an...Ch. 1.1 - Use the Intermediate Value Theorem to find an...Ch. 1.1 - Consider the equations in Exercise 1. Apply two...Ch. 1.1 - Consider the equations in Exercise 2. Apply two...Ch. 1.1 - Consider the equation x4=x3+10 . a. Find an...Ch. 1.1 - Suppose that the Bisection Method with starting...Ch. 1.1 - Prob. 1CPCh. 1.1 - Use the Bisection Method to find the root to eight...Ch. 1.1 - Use the Bisection Method to locate all solutions...Ch. 1.1 - Prob. 4CP
Ch. 1.1 - Prob. 5CPCh. 1.1 - Use the Bisection Method to calculate the solution...Ch. 1.1 - Use the Bisection Method to find the two real...Ch. 1.1 - The Hilbert matrix is the nn matrix whose ijth...Ch. 1.1 - Prob. 9CPCh. 1.1 - A planet orbiting the sun traverses an ellipse....Ch. 1.2 - Find all fixed points of the following gx . a. 3x...Ch. 1.2 - Find all fixed points of the following gx . x+63x2...Ch. 1.2 - Prob. 3ECh. 1.2 - Show that -1, 0, and 1 are fixed points of the...Ch. 1.2 - For which of the following gx is r=3 a fixed...Ch. 1.2 - For which of the following is a fixed...Ch. 1.2 - Use Theorem 1.6 to determine whether Fixed-Point...Ch. 1.2 - Use Theorem 1.6 to determine whether Fixed-Point...Ch. 1.2 - Find each fixed point and decide whether...Ch. 1.2 - Find each fixed point and decide whether...Ch. 1.2 - Express each equation as a fixed-point problem...Ch. 1.2 - Consider the Fixed-Point Iteration xgx=x20.24 ....Ch. 1.2 - (a) Find all fixed points of.
(b) To which of the...Ch. 1.2 - Which of the following three Fixed-Point...Ch. 1.2 - Which of the following three Fixed-Point...Ch. 1.2 - Which of the following three Fixed-Point...Ch. 1.2 - Check that and -1 are roots of. Isolate the term...Ch. 1.2 - Prove that the method of Example 1.6 will...Ch. 1.2 - Explore the idea of Example 1.6 for cube roots. Lf...Ch. 1.2 - Improve the cube root algorithm of Exercise 19 by...Ch. 1.2 - Prob. 21ECh. 1.2 - Prob. 22ECh. 1.2 - Assume that gx is continuously differentiable and...Ch. 1.2 - Assume that g is a continuously differentiable...Ch. 1.2 - Prob. 25ECh. 1.2 - Prove that a continuously differentiable function ...Ch. 1.2 - Prob. 27ECh. 1.2 - Prob. 28ECh. 1.2 - Prob. 29ECh. 1.2 - Prob. 30ECh. 1.2 - Prob. 31ECh. 1.2 - Find the set of all initial guesses for which the...Ch. 1.2 - Prob. 33ECh. 1.2 - Prob. 1CPCh. 1.2 - Prob. 2CPCh. 1.2 - Calculate the square roots of the following...Ch. 1.2 - Calculate the cube roots of the following numbers...Ch. 1.2 - Prob. 5CPCh. 1.2 - Prob. 6CPCh. 1.2 - Prob. 7CPCh. 1.3 - Find the forward and backward error for the...Ch. 1.3 - Find the forward and backward error for the...Ch. 1.3 - (a) Find the multiplicity of the root r=0 of...Ch. 1.3 - (a) Find the multiplicity of the root of.
(b)...Ch. 1.3 - Find the relation between forward and backward...Ch. 1.3 - Let be a positive integer. The equation defining...Ch. 1.3 - Let be the Wilkinson polynomial. (a) Prove that ...Ch. 1.3 - Let fx=xnaxn1 , and set gx=xn . (a) Use the...Ch. 1.3 - Prob. 1CPCh. 1.3 - Carry' out Computer Problem 1 for fx=sinx3x3 .Ch. 1.3 - Prob. 3CPCh. 1.3 - Prob. 4CPCh. 1.3 - Prob. 5CPCh. 1.3 - Prob. 6CPCh. 1.4 - Apply two steps of Newton’s Method with initial...Ch. 1.4 - Apply two steps of Newton’s Method with initial...Ch. 1.4 - Use Theorem 1.11 or 1.12 to estimate the error...Ch. 1.4 - Estimate
as in Exercise 3.
(a) ; ,
(b) ; ,
Ch. 1.4 - Consider the equation 8x412x3+6x2x=0 . For each of...Ch. 1.4 - Sketch a function f and initial guess for which...Ch. 1.4 - Let fx=x47x3+18x220x+8 . Does Newton’s Method...Ch. 1.4 - Prove that Newton’s Method applied to fx=ax+b...Ch. 1.4 - Show that applying Newton’s Method to fx=x2A...Ch. 1.4 - Find the Fixed-Point Iteration produced by...Ch. 1.4 - Use Newton’s Method to produce a quadratically...Ch. 1.4 - Suppose Newton’s Method is applied to the...Ch. 1.4 - (a) The function has a root at . If the error ...Ch. 1.4 - Let
denote the Newton’s Method iteration for the...Ch. 1.4 - Each equation has one root. Use Newton’s Method to...Ch. 1.4 - Prob. 2CPCh. 1.4 - Apply Newton’s Method to find the only root to as...Ch. 1.4 - Carry out the steps of Computer Problem 3 for (a)...Ch. 1.4 - Prob. 5CPCh. 1.4 - Prob. 6CPCh. 1.4 - Consider the function fx=esin3x+x62x4x31 on the...Ch. 1.4 - Prob. 8CPCh. 1.4 - Prob. 9CPCh. 1.4 - Set fx=54x6+45x5102x469x3+35x2+16x4 . Plot the...Ch. 1.4 - The ideal gas law for a gas at low temperature and...Ch. 1.4 - Prob. 12CPCh. 1.4 - Prob. 13CPCh. 1.4 - Prob. 14CPCh. 1.4 - Prob. 15CPCh. 1.4 - Prob. 16CPCh. 1.4 - Consider the national population growth model...Ch. 1.5 - Prob. 1ECh. 1.5 - Apply two steps of the Method of False Position...Ch. 1.5 - Apply two steps of Inverse Quadratic Interpolation...Ch. 1.5 - A commercial fisher wants to set the net at a...Ch. 1.5 - Prob. 5ECh. 1.5 - If the Secant Method converges to, , and , then...Ch. 1.5 - Consider the following four methods for...Ch. 1.5 - Prob. 1CPCh. 1.5 - Use the Method of False Position to find the...Ch. 1.5 - Prob. 3CPCh. 1.5 - Prob. 4CPCh. 1.5 - Prob. 5CPCh. 1.5 - Prob. 6CPCh. 1.5 - Write a MATLAB function file for f . The...Ch. 1.5 - Plot f on , . You may use the @ symbol as...Ch. 1.5 - Reproduce Figure 1.15. The MATLAB commands and...Ch. 1.5 - Solve the forward kinematics problem for the...Ch. 1.5 - Prob. 5SACh. 1.5 - Find a strut length p2 , with the rest of the...Ch. 1.5 - Calculate the intervals in p2 , with the rest of...Ch. 1.5 - Prob. 8SA
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- 10) Find n(K) given that n(T) = 7,n(KT) = 5,n(KUT) = 13.arrow_forward7) Use the Venn Diagram below to determine the sets A, B, and U. A = B = U = Blue Orange white Yellow Black Pink Purple green Grey brown Uarrow_forward8. For x>_1, the continuous function g is decreasing and positive. A portion of the graph of g is shown above. For n>_1, the nth term of the series summation from n=1 to infinity a_n is defined by a_n=g(n). If intergral 1 to infinity g(x)dx converges to 8, which of the following could be true? A) summation n=1 to infinity a_n = 6. B) summation n=1 to infinity a_n =8. C) summation n=1 to infinity a_n = 10. D) summation n=1 to infinity a_n diverges.arrow_forward
- 1) Use the roster method to list the elements of the set consisting of: a) All positive multiples of 3 that are less than 20. b) Nothing (An empty set).arrow_forward2) Let M = {all postive integers), N = {0,1,2,3... 100), 0= {100,200,300,400,500). Determine if the following statements are true or false and explain your reasoning. a) NCM b) 0 C M c) O and N have at least one element in common d) O≤ N e) o≤o 1arrow_forward4) Which of the following universal sets has W = {12,79, 44, 18) as a subset? Choose one. a) T = {12,9,76,333, 44, 99, 1000, 2} b) V = {44,76, 12, 99, 18,900,79,2} c) Y = {76,90, 800, 44, 99, 55, 22} d) x = {79,66,71, 4, 18, 22,99,2}arrow_forward
- 3) What is the universal set that contains all possible integers from 1 to 8 inclusive? Choose one. a) A = {1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8} b) B={-1,0,1,2,3,4,5,6,7,8} c) C={1,2,3,4,5,6,7,8} d) D = {0,1,2,3,4,5,6,7,8}arrow_forwardA smallish urn contains 25 small plastic bunnies – 7 of which are pink and 18 of which are white. 10 bunnies are drawn from the urn at random with replacement, and X is the number of pink bunnies that are drawn. (a) P(X = 5) ≈ (b) P(X<6) ≈ The Whoville small urn contains 100 marbles – 60 blue and 40 orange. The Grinch sneaks in one night and grabs a simple random sample (without replacement) of 15 marbles. (a) The probability that the Grinch gets exactly 6 blue marbles is [ Select ] ["≈ 0.054", "≈ 0.043", "≈ 0.061"] . (b) The probability that the Grinch gets at least 7 blue marbles is [ Select ] ["≈ 0.922", "≈ 0.905", "≈ 0.893"] . (c) The probability that the Grinch gets between 8 and 12 blue marbles (inclusive) is [ Select ] ["≈ 0.801", "≈ 0.760", "≈ 0.786"] . The Whoville small urn contains 100 marbles – 60 blue and 40 orange. The Grinch sneaks in one night and grabs a simple random sample (without replacement) of 15 marbles. (a)…arrow_forwardUsing Karnaugh maps and Gray coding, reduce the following circuit represented as a table and write the final circuit in simplest form (first in terms of number of gates then in terms of fan-in of those gates).arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education

Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education

Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON


Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON

Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,

Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Numerical Integration Introduction l Trapezoidal Rule Simpson's 1/3 Rule l Simpson's 3/8 l GATE 2021; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=zadUB3NwFtQ;License: Standard YouTube License, CC-BY