Fundamentals of Thermal-Fluid Sciences
Fundamentals of Thermal-Fluid Sciences
5th Edition
ISBN: 9780078027680
Author: Yunus A. Cengel Dr., Robert H. Turner, John M. Cimbala
Publisher: McGraw-Hill Education
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 25P
To determine

The anchoring force needed to hold the elbow in place.

Expert Solution & Answer
Check Mark

Explanation of Solution

Given:

The elbow angle (θ) is 45°.

The cross sectional area at inlet (A1) is 150cm2.

The cross sectional area at exit (A2) is 25cm2.

The elevation difference (z2z1) is 40cm.

The mass of the elbow and the water in it is (m) is 50kg.

The momentum-flux correction factor is (β) is 1.03.

The mass flow rate (m˙) is 30kg/s.

Calculation:

Calculate the weight density of water by using the relation.

    W=mg=(50kg)(9.81m/s2)=490.5kgm/s2(1N1kgm/s2)=490.5N

Calculate the velocity at the inlet (V1) of the pipe using the relation.

  V1=m˙ρA1=30kg/s(1000kg/m3)(150cm2(1m100cm)2)=2.0m/s

Calculate the velocity at the outlet (V2) of the pipe using the relation.

  V2=m˙ρA2=30kg/s(1000kg/m3)(25cm2(1m100cm)2)=12.0m/s

Calculate the gauge pressure at the center on the inlet of the elbow by using Bernoulli’s

Equation.

    p1ρg+V122g+z1=p2ρg+V222g+z2p1p2=ρg(z2z1+V22V122g)

  p=ρg(z2z1+V22V122g)=[(1000(Kg/m3))(9.81(m/s2))(40cm(1m100cm)+((12m/s)2(2m/s)22(9.81m/s)))×(1kN1000kg.m/s2)]=73.9kN/m2(1kPa1kN/m2)=73.9kPa

Calculate the anchoring force in x direction by using moment equation.

  FRx+p1A1=βm˙V2cosθβm˙V1FRx=βm˙(V2cosθV1)p1A1=[1.03(30kg/s)(12cos45°2)m/s(1kN1000kg.m/s2)(73.9kN/m2)(150cm2(1m100cm)2)]=0.908kN

Calculate the anchoring force in y direction by using moment equation.

    FRz=βm˙V2sinθ+W=1.03(30kg/s)(12sin45°m/s)(1kN1000kg.m/s2)+0.4905kN=0.753kN

Calculate the total anchoring force by using the expression.

    FR=FRx2+FRy2=(0.908kN)2+(0.753kN)2=1.18kN

Calculate the angle of the total anchoring force by using the expression.

    θ=tan1(FRzFRx)=tan1(0.7530.908)=39.7°

Thus, the anchoring force needed to hold the elbow is 1.18kN_ in the direction of negative in the direction of 39.7°.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Q Derive (continuity equation)? I want to derive clear mathematics.
motor supplies 200 kW at 6 Hz to flange A of the shaft shown in Figure. Gear B transfers 125 W of power to operating machinery in the factory, and the remaining power in the shaft is mansferred by gear D. Shafts (1) and (2) are solid aluminum (G = 28 GPa) shafts that have the same diameter and an allowable shear stress of t= 40 MPa. Shaft (3) is a solid steel (G = 80 GPa) shaft with an allowable shear stress of t = 55 MPa. Determine: a) the minimum permissible diameter for aluminum shafts (1) and (2) b) the minimum permissible diameter for steel shaft (3). c) the rotation angle of gear D with respect to flange A if the shafts have the minimum permissible diameters as determined in (a) and (b).
First monthly exam Gas dynamics Third stage Q1/Water at 15° C flow through a 300 mm diameter riveted steel pipe, E-3 mm with a head loss of 6 m in 300 m length. Determine the flow rate in pipe. Use moody chart. Q2/ Assume a car's exhaust system can be approximated as 14 ft long and 0.125 ft-diameter cast-iron pipe ( = 0.00085 ft) with the equivalent of (6) regular 90° flanged elbows (KL = 0.3) and a muffler. The muffler acts as a resistor with a loss coefficient of KL= 8.5. Determine the pressure at the beginning of the exhaust system (pl) if the flowrate is 0.10 cfs, and the exhaust has the same properties as air.(p = 1.74 × 10-3 slug/ft³, u= 4.7 x 10-7 lb.s/ft²) Use moody chart (1) MIDAS Kel=0.3 Q3/Liquid ammonia at -20°C is flowing through a 30 m long section of a 5 mm diameter copper tube(e = 1.5 × 10-6 m) at a rate of 0.15 kg/s. Determine the pressure drop and the head losses. .μ= 2.36 × 10-4 kg/m.s)p = 665.1 kg/m³

Chapter 13 Solutions

Fundamentals of Thermal-Fluid Sciences

Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
8.01x - Lect 27 - Fluid Mechanics, Hydrostatics, Pascal's Principle, Atmosph. Pressure; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=O_HQklhIlwQ;License: Standard YouTube License, CC-BY
Dynamics of Fluid Flow - Introduction; Author: Tutorials Point (India) Ltd.;https://www.youtube.com/watch?v=djx9jlkYAt4;License: Standard Youtube License