College Physics (10th Edition)
10th Edition
ISBN: 9780321902788
Author: Hugh D. Young, Philip W. Adams, Raymond Joseph Chastain
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 13, Problem 22P
Ear damage from diving. If the force on the tympanic membrane (eardrum) increases by about 1.5 N above the force from atmospheric pressure, the membrane can be damaged. When you go scuba diving in the ocean, below what depth could damage to your eardrum start to occur? The eardrum is typically 8.2 mm in diameter. (Consult Table 13.1.)
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
If the force on the eardrum increases by
1.5 N compared to the force at
atmospheric pressure, the eardrum may
burst. How deep can a diver dive without
damaging the eardrum? The tympanic
membrane of an adult human is a
membrane of circular cross-section with
a diameter of 8.2 mm, and the density of
the sea is 1030 kg/m³.
The tympanic membrane, or eardrum, is a structure that separates the external and middle parts of the ear (see the figure). It is
sensitive to and vibrates in response to changes in air pressure and transmits these vibrations to other structures in the inner ear that
lead to the sensation of hearing: Under normal conditions, the pressure on the inside and outside of the tympanic membrane are kept
approximately equal. The auditory tube, also called the Eustachian tube, is responsible for this equilibration. However, rapid changes in
external pressure can cause large pressure differentials on the tympanic membrane, causing it to rupture. A differential force across
the eardrum membrane as little as 5.0 N can cause a rupture. (a) If the cross-sectional area of the membrane is 1.0 cm², what is the
maximum tolerable pressure difference between the external and inner ear? (b) Based on your answer in part (a), to what maximum
depth could a person dive in fresh water before rupturing an…
If the eardrum experiences a 1.5 N increase from the atmospheric pressure, it can be
damaged. When you go scuba diving in the ocean, at what depth could such damage
start to occur if your eardrum is 8.2-mm in diameter? The answer is expressed in meters
and in two decimal places.
Chapter 13 Solutions
College Physics (10th Edition)
Ch. 13 - A clear plastic hose is attached to the narrow end...Ch. 13 - Equation 13.5 shows that an area ratio of 100 to 1...Ch. 13 - Suppose the door of a room makes an airtight, but...Ch. 13 - When a smooth-flowing stream of water comes out of...Ch. 13 - You push an empty glass jar into a tank of water...Ch. 13 - A very smooth wooden block is pressed against the...Ch. 13 - A marble is in a little box that is floating in a...Ch. 13 - If a rocketship traveling through the vacuum of...Ch. 13 - There is a great deal of ice floating on the...Ch. 13 - Submarines can remain at equilibrium at various...
Ch. 13 - You are told, Bernoullis equation tells us that...Ch. 13 - A helium-filled balloon is tied to a light string...Ch. 13 - Which has a greater buoyant force on it, a 25 cm3...Ch. 13 - A mass of sunken lead is resting against the...Ch. 13 - Two equal-mass pieces of metal are sitting side by...Ch. 13 - Prob. 4MCPCh. 13 - A horizontal cylindrical pipe has a part with a...Ch. 13 - If the absolute pressure at a depth d in a lake is...Ch. 13 - Prob. 7MCPCh. 13 - A rigid metal object is dropped into a lake and...Ch. 13 - Prob. 9MCPCh. 13 - Identical-size cubes of lead and aluminum are...Ch. 13 - Two small holes are drilled in the side of a...Ch. 13 - Prob. 12MCPCh. 13 - You purchase a rectangular piece of metal that has...Ch. 13 - A kidnapper demands a 40.0 kg cube of platinum as...Ch. 13 - Calculate the weight of air at 20C in a room that...Ch. 13 - By how many newtons do you increase the weight of...Ch. 13 - How big is a million dollars? At the time this...Ch. 13 - A cube 5.0 cm on each side is made of a metal...Ch. 13 - A cube of compressible material (such as Styrofoam...Ch. 13 - A hollow cylindrical copper pipe is 1.50 m long...Ch. 13 - A uniform lead sphere and a uniform aluminum...Ch. 13 - Prob. 10PCh. 13 - Blood, (a) Mass of blood. The human body typically...Ch. 13 - Landing on Venus. One of the great difficulties in...Ch. 13 - You are designing a manned submersible to...Ch. 13 - Glaucoma. Under normal circumstances, the vitreous...Ch. 13 - A 1-m-tall glass tube is placed on the moon and...Ch. 13 - What gauge pressure must a pump produce to pump...Ch. 13 - Intravenous feeding. A hospital patient is being...Ch. 13 - A 975-kg car has its tires each inflated to 32.0...Ch. 13 - An electrical short cuts off all power to a...Ch. 13 - Standing on your head. (a) When you stand on your...Ch. 13 - You are designing a machine for a space...Ch. 13 - Ear damage from diving. If the force on the...Ch. 13 - A barrel contains a 0.120 m layer of oil of...Ch. 13 - Blood pressure. Systemic blood pressure is...Ch. 13 - The piston of a hydraulic automobile lift is 0.30...Ch. 13 - Prob. 27PCh. 13 - There is a maximum depth at which a diver can...Ch. 13 - A solid aluminum ingot weighs 89 N in air. (a)...Ch. 13 - A block of wood has a density of 700 kg/m3. It is...Ch. 13 - When an open-faced boat has a mass of 5750 kg,...Ch. 13 - An ore sample weighs 17.50 N in air. When the...Ch. 13 - A slab of ice floats on a freshwater lake. What...Ch. 13 - Using data from Appendix E, calculate the average...Ch. 13 - A hollow plastic sphere is held below the surface...Ch. 13 - (a) Calculate the buoyant force of air (density...Ch. 13 - The tip of the iceberg. Icebergs consist of...Ch. 13 - At 20C, the surface tension of water is 0.073 N/m....Ch. 13 - Find the gauge pressure in pascals inside a soap...Ch. 13 - What radius must a water drop have for the...Ch. 13 - At 20C, the surface tension of water is 0.0728 N/m...Ch. 13 - An irrigation canal has a rectangular cross...Ch. 13 - Water is flowing in a pipe with a varying...Ch. 13 - Water is flowing in a cylindrical pipe of varying...Ch. 13 - A shower head has 20 circular openings, each with...Ch. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - A sealed tank containing seawater to a height of...Ch. 13 - What gauge pressure is required in the city water...Ch. 13 - At one point in a pipeline, the waters speed is...Ch. 13 - Lift on an airplane. Air streams horizontally past...Ch. 13 - A golf course sprinkler system discharges water...Ch. 13 - Water discharges from a horizontal cylindrical...Ch. 13 - Prob. 54PCh. 13 - At a certain point in a horizontal pipeline, the...Ch. 13 - Advertisements for a certain small car claim that...Ch. 13 - A U-shaped tube open to the air at both ends...Ch. 13 - A swimming pool is 3 m wide and 6 m long. The...Ch. 13 - A piece of wood is 0.600 m long. 0.250 m wide, and...Ch. 13 - A hot-air balloon has a volume of 2200 m3. The...Ch. 13 - In seawater, a life preserver with a volume of...Ch. 13 - Block A in Figure 13.43 hangs by a cord from...Ch. 13 - A hunk of aluminum is completely covered with a...Ch. 13 - An industrial waste tank contains a layer of...Ch. 13 - An open cylindrical tank of acid rests at the edge...Ch. 13 - Water stands at a depth H in a large, open tank...Ch. 13 - Prob. 67GPCh. 13 - The horizontal pipe shown in Figure 13.45 has a...Ch. 13 - Venturi meter. The Venturi meter is a device used...Ch. 13 - Elephants under pressure. An elephant can swim or...Ch. 13 - Prob. 71PPCh. 13 - Elephants under pressure. An elephant can swim or...Ch. 13 - Prob. 73PP
Additional Science Textbook Solutions
Find more solutions based on key concepts
Express the unit vectors in terms of (that is, derive Eq. 1.64). Check your answers several ways Also work o...
Introduction to Electrodynamics
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective
The field of an infinite charged line decreases as 1/r. Why isnt this a violation of the inverse-square law?
Essential University Physics: Volume 2 (3rd Edition)
1. When is energy most evident?
Conceptual Physics (12th Edition)
Q17.2 If you heat the air inside a rigid, scaled container until its Kelvin temperature doubles, the air pressu...
University Physics (14th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- (a) As blood passes through the capillary bed in an organ, the capillaries join to form venules (small veins). If the blood speed increases by a factor of 4.00 and the total cross-sectional area of the venules is 10.0 cm2, what is the total cross-sectional area of the capillaries feeding these venules? (b) How many capillaries are involved if their average diameter is 10.0 m?arrow_forwardIn about 1657, Otto von Guericke, inventor of the air pump, evacuated a sphere made of two brass hemispheres (Fig. P15.62). Two teams of eight horses each could pull the hemispheres apart only on some trials and then with greatest difficulty, with the resulting sound likened to a cannon firing. Find the force F required to pull the thin-walled evacuated hemispheres apart in terms of R, the radius of the hemispheres; P, the pressure inside the hemispheres; and atmospheric pressure P0. Figure P15.62arrow_forwardThe tympanic membrane, or eardrum, is a structure that separates the external and middle parts of the ear (see the figure). It is sensitive to and vibrates in response to changes in air pressure and transmits these vibrations to other structures in the inner ear that lead to the sensation of hearing. Under normal conditions, the pressure on the inside and outside of the tympanic membrane are kept approximately equal. The auditory tube, also called the Eustachian tube, is responsible for this equilibration. However, rapid changes in external pressure can cause large pressure differentials on the tympanic membrane, causing it to rupture. A differential force across the eardrum membrane as little as 5.0 N can cause a rupture. (a) If the cross-sectional area of the membrane is 1.0 cm², what is the maximum tolerable pressure difference between the external and inner ear? (b) Based on your answer in part (a), to what maximum depth could a person dive in fresh water before rupturing an…arrow_forward
- If you dive underwater, you notice an uncomfortable pressure on your eardrums due to the increased pressure. The human eardrum has an area of about 70 mm2(7 × 10-5 m2), and it can sustain a force of about 7 N without rupturing. If your body had no means of balancing the extra pressure (which, in reality, it does), what would be the maximum depth you could dive withoutrupturing your eardrum?A. 0.3 m B. 1 m C. 3 m D. 10 marrow_forwardIf the eardrum experiences a 1.5 N increase from the atmospheric pressure, it can be damaged . When you go scuba diving in the ocean, at what depth could such damage start to occur if your eardrum is of 8.2-mm diameter? Express your answer in Newtons in two decimal places.arrow_forwardIf a scuba diver descends too quickly into the sea, the internal pressure on each eardrum remains at atmospheric pressure while the external pressure increases due to the increased water depth. At sufficient depths, the difference between the external and internal pressures can rupture an eardrum. Eardrums can rupture when the pressure difference is as little as 35 kPa. What is the depth at which this pressure difference could occur? The density of seawater is 1025 kg/m3.arrow_forward
- If a scuba diver descends too quickly into the sea, the internal pressure on each eardrum remains at atmospheric pressure, while the external pressure increases due to the increased water depth. At sufficient depths, the difference between the external and internal pres- sures can rupture an eardrum. Eardrums can rupture when the pressure difference is as little as 35 kPa. What is the depth at which this pressure difference could occur? The density of seawater is 1025 kg/m³. 88.arrow_forwardIf a scuba diver descends too quickly into the sea, the internal pressure on each eardrum remains at atmospheric pressure, while the external pressure increases due to the increased water depth. At sufficient depths, the difference between the external and internal pressures can rupture an eardrum. Eardrums can rupture when the pressure difference is as little as 35 kPa. What is the depth at which this pressure difference could occur? The density of seawater is 1025 kg/m3.1-sketch a diagramarrow_forwardA 79-kg swami lies on a bed of nails with his body supported by 2,000 nails. The area of the point of each nail is 1 mm^2. If the threshold pressure for pain is 1 mpa, how unpleasant is the experience for the swami? What if the point area is 0.1mm^2?arrow_forward
- In order to draw air into your lungs, your diaphragm and other muscles contract, increasing the lung volume. This lowers the air pressure of the lungs to below atmospheric pressure, and air flows in. When your diaphragm and other muscles relax, the volume of the lungs decreases, and air is forced out. (a) If the total volume of your lungs at rest is 5.31 L and the initial pressure is 749 mmHg, what is the new pressure if the lung volume is increased to 5.45 L? mmHg(b) If the total volume of your lungs at rest is 5.31 L and the initial pressure is 749 mmHg, at what volume will the pressure be 769 mmHg? Larrow_forwardWhen you stifle a sneeze, you can damage delicate tissues because the pressure of the air that is not allowed to escape may rise by up to 45 kPa. If this extra pressure acts on the inside of your 8.4-mm-diameter eardrum, what is the outward force?arrow_forwardA health magazine reported that physicians measured 100 adults’ blood pressure using two different arm positions: parallel to the body (along the side) and perpendicular to the body (straight out). Readings in the parallel position were up to 10 percent higher than those in the perpendicular position, regardless of whether the patient was standing, sitting, or lying down. Explain the possible cause for the difference.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
Fluids in Motion: Crash Course Physics #15; Author: Crash Course;https://www.youtube.com/watch?v=fJefjG3xhW0;License: Standard YouTube License, CC-BY