![Bundle: Stewart, Essential Calculus: Early Transcendentals, 2nd (hardound) + WebAssign Printed Access Card for Stewart's Essential Calculus: Early ... Multi-Term + WebAssign - Start Smart Guide](https://www.bartleby.com/isbn_cover_images/9781133425946/9781133425946_largeCoverImage.gif)
Concept explainers
To explain: A
![Check Mark](/static/check-mark.png)
Answer to Problem 1RCC
The vector field and its three examples that have physical meaning are explained.
Explanation of Solution
Refer to Figure 1 in the textbook for the velocity vector fields showing San Francisco Bay wind patterns.
Refer to Figure 2 in the textbook for the velocity vector fields.
Refer to Figure 14 in the textbook for the gravitational force field.
A vector filed is defined as a function which assigns a vector to each and every point located in the region of a vector.
Consider D is a plane region in
The examples that have physical meaning are as follows,
- The velocity of a wind in a place is a physical example for vector field. The arrows in Figure 1 indicate the speed and direction of wind in that specific area. The largest arrows indicate the winds with a greatest speed in that region. Therefore, the wind is a vector which is shown at each point, so it is an example of vector field.
- The velocity of ocean currents is a physical example of vector field. The speed and direction of ocean currents are indicated by arrows as shown in Figure 2. Hence, the ocean currents are assigned at every point in a region, so it is a velocity vector field.
- Another physical example for vector field is gravitational field at any location on the Earth. The gravitation force is associated with each and every point in the space as shown in Figure 14. Hence, the gravitational field is an example of vector field.
Thus, the vector field and the three examples of vector field that have physical meaning are explained.
Want to see more full solutions like this?
Chapter 13 Solutions
Bundle: Stewart, Essential Calculus: Early Transcendentals, 2nd (hardound) + WebAssign Printed Access Card for Stewart's Essential Calculus: Early ... Multi-Term + WebAssign - Start Smart Guide
- A 10-ft boom is acted upon by the 810-lb force as shown in the figure. D 6 ft 6 ft E B 7 ft C 6 ft 4 ft W Determine the tension in each cable and the reaction at the ball-and-socket joint at A. The tension in cable BD is lb. The tension in cable BE is lb. The reaction at A is ( lb) i + Ib) j. (Include a minus sign if necessary.)arrow_forwardthe correct answer is A could you show me whyarrow_forwardGood Day, Kindly assist me with this query.arrow_forward
- on donne f(x) da fonction derive dhe do fonction fcsos calcule f'(x) orans chacun des Cas sulants: 3 1) f(x)=5x-11, 2- f (x) = ->³ 3-1(x) = x² 12x +π; 4-f(x)=- 5-f(x) = 33-4x6-609)=-3x²+ 7= f(x) = x + 1.8-f(x) = 4 s-f(x) = x++ X+1 -x-1 2 I 3x-4 девоarrow_forwardThe correct answer is Ccould you show me how to do it by finding a0 and and akas well as setting up the piecewise function and integratingarrow_forwardT 1 7. Fill in the blanks to write the calculus problem that would result in the following integral (do not evaluate the interval). Draw a graph representing the problem. So π/2 2 2πxcosx dx Find the volume of the solid obtained when the region under the curve on the interval is rotated about the axis.arrow_forward
- 38,189 5. Draw a detailed graph to and set up, but do not evaluate, an integral for the volume of the solid obtained by rotating the region bounded by the curve: y = cos²x_for_ |x| ≤ and the curve y y = about the line x = =플 2 80 F3 a FEB 9 2 7 0 MacBook Air 3 2 stv DGarrow_forwardFind f(x) and g(x) such that h(x) = (fog)(x) and g(x) = 3 - 5x. h(x) = (3 –5x)3 – 7(3 −5x)2 + 3(3 −5x) – 1 - - - f(x) = ☐arrow_forwardx-4 Let f(x)=5x-1, h(x) = Find (fo h)(0). 3 (fo h)(0) = (Type an integer or a fraction.)arrow_forward
- Fill in the blanks to write the calculus problem that would result in the following integral (do not evaluate the interval). Draw a graph representing the problem. π/2 So/² 2xcosx dx Find the volume of the solid obtained when the region under the curve 38,189 on the interval is rotated about the axis.arrow_forwardLet f(x) = -5x-1, g(x) = x² + 5, h(x) = · x+4 3 Find (hog of)(1). (hogof)(1)= (Simplify your answer. Type an integer or a decimal.)arrow_forwardFor the given function, find (a) the equation of the secant line through the points where x has the given values and (b) the equation of the tangent line when x has the first value. y= f(x) = x²+x; x=-1,x=2 a. Which of the following formulas can be used to find the slope of the secant line? ○ A. 2-(-1) f(2) f(-1) 2+(-1) C. 1(2)+(-1) The equation of the secant line is 1(2)+(-1) О в. 2+(-1) f(2)-(-1) D. 2-(-1)arrow_forward
- Algebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:CengageElementary Linear Algebra (MindTap Course List)AlgebraISBN:9781305658004Author:Ron LarsonPublisher:Cengage LearningTrigonometry (MindTap Course List)TrigonometryISBN:9781337278461Author:Ron LarsonPublisher:Cengage Learning
- Algebra and Trigonometry (MindTap Course List)AlgebraISBN:9781305071742Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305658004/9781305658004_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337278461/9781337278461_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305071742/9781305071742_smallCoverImage.gif)