Concept explainers
In Fig. 13-21, a central particle of mass M is surrounded by a square array of other particles, separated by either distance d or distance d/2 along the perimeter of the square. What are the magnitude and direction of the net gravitational force on the central particle due to the other particles?
Figure 13-21 Question 1.
To find:
The magnitude and direction of the net gravitational force acting on the central particle due to the other particles
Answer to Problem 1Q
Solution:
The net gravitational force acting on the central particle due to the other particles is
and is directed towards left.
Explanation of Solution
1) Concept:
Observing the figure, we can cancel out the equal and opposite forces. The sum of the remaining forces will be the net force acting on the central particle M.
2) Given:
Thefigure of system of particles is given.
3) Formulae:
The Gravitational force of attraction between two bodies of masses M and m separated by distance R is,
4) Calculations:
From the given figure, we can infer that the gravitation force due to each particle on one of the sides of the square is cancelled by the gravitational force due to one of the particles on the opposite side of the square with the same mass except particle 3M. Particle 3M would exert force on M, but there is no force on the opposite side which can cancel this force.
So, the net force acting on the central particle M is due to the particle 3M which is
As we know the gravitational force is an attractive force, the force on particle M by particle 3M is pointing towards the left.
Conclusion:
Using the formula for gravitational force, we can find the net force acting on the particle due to the system of particles.
Want to see more full solutions like this?
Chapter 13 Solutions
FUNDAMENTALS OF PHYSICS (LLF)+WILEYPLUS
Additional Science Textbook Solutions
Chemistry: The Central Science (14th Edition)
Human Physiology: An Integrated Approach (8th Edition)
Microbiology: An Introduction
Principles of Anatomy and Physiology
Cosmic Perspective Fundamentals
Human Biology: Concepts and Current Issues (8th Edition)
- air is pushed steadily though a forced air pipe at a steady speed of 4.0 m/s. the pipe measures 56 cm by 22 cm. how fast will air move though a narrower portion of the pipe that is also rectangular and measures 32 cm by 22 cmarrow_forwardNo chatgpt pls will upvotearrow_forward13.87 ... Interplanetary Navigation. The most efficient way to send a spacecraft from the earth to another planet is by using a Hohmann transfer orbit (Fig. P13.87). If the orbits of the departure and destination planets are circular, the Hohmann transfer orbit is an elliptical orbit whose perihelion and aphelion are tangent to the orbits of the two planets. The rockets are fired briefly at the depar- ture planet to put the spacecraft into the transfer orbit; the spacecraft then coasts until it reaches the destination planet. The rockets are then fired again to put the spacecraft into the same orbit about the sun as the destination planet. (a) For a flight from earth to Mars, in what direction must the rockets be fired at the earth and at Mars: in the direction of motion, or opposite the direction of motion? What about for a flight from Mars to the earth? (b) How long does a one- way trip from the the earth to Mars take, between the firings of the rockets? (c) To reach Mars from the…arrow_forward
- No chatgpt pls will upvotearrow_forwarda cubic foot of argon at 20 degrees celsius is isentropically compressed from 1 atm to 425 KPa. What is the new temperature and density?arrow_forwardCalculate the variance of the calculated accelerations. The free fall height was 1753 mm. The measured release and catch times were: 222.22 800.00 61.11 641.67 0.00 588.89 11.11 588.89 8.33 588.89 11.11 588.89 5.56 586.11 2.78 583.33 Give in the answer window the calculated repeated experiment variance in m/s2.arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningClassical Dynamics of Particles and SystemsPhysicsISBN:9780534408961Author:Stephen T. Thornton, Jerry B. MarionPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- University Physics Volume 1PhysicsISBN:9781938168277Author:William Moebs, Samuel J. Ling, Jeff SannyPublisher:OpenStax - Rice University