Electric Circuits (10th Edition)
10th Edition
ISBN: 9780133760033
Author: James W. Nilsson, Susan Riedel
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 13, Problem 1P
To determine
Derive the inductor current in s-domain as shown in given equivalent circuit.
Expert Solution & Answer
Answer to Problem 1P
The inductor current in s-domain for the given equivalent circuit is derived as
Explanation of Solution
Given data:
Refer to the given circuit in textbook.
The inductor current is a function of terminal voltage.
Calculation:
Write a general expression to calculate the inductor current in time domain.
Here,
Apply Laplace transform for equation (1) to find
Conclusion:
Thus, the inductor current in s-domain for the given equivalent circuit is derived as
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Don't use ai to answer I will report you answer
Not use ai please
49.
For the circuit below, what is the best connection of the capacitor to filte
voltage?
ბი
DO
A O
BO
wwwww
wwwww
M
m
H
E
LOAD
Chapter 13 Solutions
Electric Circuits (10th Edition)
Ch. 13.2 - Prob. 1APCh. 13.2 - The parallel circuit in Example 13.1 is placed in...Ch. 13.3 - Prob. 3APCh. 13.3 - The energy stored in the circuit shown is zero at...Ch. 13.3 - The dc current and dc voltage sources are applied...Ch. 13.3 - Prob. 6APCh. 13.3 - Using the results from Example 13.7 for the...Ch. 13.3 - The energy stored in the circuit shown is zero at...Ch. 13.4 -
Derive the numerical expression for the transfer...Ch. 13.5 - Find (a) the unit step and (b) the unit impulse...
Ch. 13.5 - The unit impulse response of a circuit is
υo(t) =...Ch. 13.7 - The current source in the circuit shown is...Ch. 13.7 - For the circuit shown, find the steady-state...Ch. 13 - Prob. 1PCh. 13 - Prob. 2PCh. 13 - Prob. 3PCh. 13 - Prob. 4PCh. 13 - An 8 kΩ resistor, a 25 mH inductor, and a 62.5 pF...Ch. 13 - Prob. 6PCh. 13 - Find the poles and zeros of the impedance seen...Ch. 13 - Find the poles and zeros of the impedance seen...Ch. 13 - Prob. 9PCh. 13 - Prob. 10PCh. 13 - Prob. 13PCh. 13 - Prob. 15PCh. 13 - There is no energy stored in the circuit in Fig....Ch. 13 - There is no energy stored in the circuit in Fig....Ch. 13 - Prob. 25PCh. 13 - Prob. 28PCh. 13 - The switch in the circuit seen in Fig. P13.32 has...Ch. 13 - Prob. 31PCh. 13 - Prob. 33PCh. 13 - Prob. 35PCh. 13 - Prob. 46PCh. 13 - Prob. 47PCh. 13 - Find the transfer function H(s) − Vo/Vi for the...Ch. 13 - Prob. 49PCh. 13 - Prob. 50PCh. 13 - Prob. 51PCh. 13 - Prob. 53PCh. 13 - Prob. 54PCh. 13 - The operational amplifier in the circuit in Fig....Ch. 13 - Find the transfer function Io/Ig as a function of...Ch. 13 - Prob. 58PCh. 13 - Prob. 59PCh. 13 - Prob. 60PCh. 13 - Prob. 61PCh. 13 - Assume the voltage impulse response of a circuit...Ch. 13 - Prob. 68PCh. 13 - The input voltage in the circuit seen in Fig....Ch. 13 - Find the impulse response of the circuit shown in...Ch. 13 - Prob. 73PCh. 13 - Prob. 74PCh. 13 - Prob. 75PCh. 13 - The op amp in the circuit seen in Fig. P13.81 is...Ch. 13 - Prob. 78PCh. 13 - The transfer function for a linear time-invariant...Ch. 13 - Prob. 80PCh. 13 - Prob. 81PCh. 13 - Prob. 82PCh. 13 - Prob. 84PCh. 13 - Prob. 85PCh. 13 - The parallel combination of R2 and C2 in the...Ch. 13 - Show that if R1C1 = R2C2 in the circuit shown in...Ch. 13 - The switch in the circuit in Fig P13.91 has been...Ch. 13 - Prob. 90PCh. 13 - Prob. 91P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 5.25. Determine the corner frequency resulting from Cin in Fig. 5.47(d). For simplicity, assume C₁ is a short circuit. TVDD C₁ M2 RF Vin H w - Vout Cin M₁arrow_forwardIn the below circuit, find out the value of equivalent Thevenin's voltage and Thevenin's resistance at the terminal. 2000 0.25 A 400 2 800 2 0.1 Aarrow_forwardQ1: For the circuit shown in Figure-1, (a) Calculate the equivalent resistance of the circuit, RAB at the terminals A and B. [10] (b) When 50V dc source is switched at terminals A-B, solve for the voltage V₁ at the location shown. [10] 50V www 12Ω 10Ω 5Ω www www A + B 200 Figure-1 www 10Ω ww 25Ω 100arrow_forward
- a. Write a PLC ladder diagram that allows the teacher to teach AND, OR, and XOR logic gates through using three PLC's digital input points and only one digital output point.arrow_forwardrately by PRACTICE 4.2 For the circuit of Fig. 4.5, compute the voltage across each curren source. 202 ww 3A 30 ww 4Ω S 50 www Reference node FIGURE 4.5 Ans: V3A =5.235 V; 7A = 11.47 V. 7 Aarrow_forwardQ2) a) design and show me your steps to convert the following signal from continuous form to digital form: s(t)=3sin(3πt) -1 373 Colesarrow_forward
- A sequence is defined by the relationship r[n] = [h[m]h[n+m]=hn*h-n where h[n] is a minimum-phase sequence and r[n]= 4 4 (u[n]+ 12" [n-1] 3 (a) Find R(z) and sketch the pole-zero diagram. (b) Determine the minimum-phase sequence h[n] to within a scale factor of ±1. Also, determine the z-transform H(z) of h[n].arrow_forwardusıng j-k and D flipflop design a counter that counts 0,2,1 again as shown below ın the tablearrow_forwardfind the minterms of the followıng boolean expressıon desıgn F's cırcuit using one of the approciate decoders given below and a NOR gateF(A,B,C,D)=(A+'BC)(B 'C+'A 'D + CD)arrow_forward
- 64) answer just two from three the following terms: A) Design ADC using the successive method if the Vmax=(3) volt, Vmin=(-2) volt, demonstrate the designing system for vin-1.2 volt. Successive Approximation ADC Input Voltage-1.1 V -4-3.5-3 -2.5 -2 -1.5 +1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 1 T -8 -7 -6 -5 -3 +2 -1 0 1 2 3 4 5 6 7 X=1??? 1st guess: -0.25 V (too high) X=11?? 2nd guess: -2.25 V (too low) 3rd guess: -1.25 V (too low) X=1110 X=111? 4th guess: -0.75 V (too high) Make successive guesses and use a comparator to tell whether your guess is too high or too low. Each guess determines one bit of the answer and cuts the number of remaining possibilities in half.arrow_forwardDatacommunıcatıonin a commuinaction ASYNCHRONOUS TRANSMİTİON is used in this transmistion 7-bit chatacter will be transfered even parity will be used ,stop element is as 1,5 bits a)=select a chracter yourself and dısplay the signal transfered in this transmission , and calculate the overhead in this transmisionarrow_forward(i) Find the inverse z-transform of the system H(z) = for the following regions of convergence. Write in the final answer for each case in the allocated rectangular box below (a) |z| 3 (c) 1arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,