Compute the value of each of the following.
a.
b.
c.
d.
e.
(a)
To calculate:
The value of
Answer to Problem 1E
Solution:
The value of
Explanation of Solution
The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13 and so on, (each term is the sum of the first two preceding terms).
The terms of the Fibonacci sequence are known as Fibonacci numbers. The
Given:
The given expression is
Formula used:
The recursive formula to calculate the
Here
Calculation:
The
Substitute 1 for
Substitute 1 for
Substitute 2 for
Similarly,
Substitute
Conclusion:
Thus, the
(b)
To calculate:
The value of
Answer to Problem 1E
Solution:
The value of
Explanation of Solution
The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13 and so on, (each term is the sum of the first two preceding terms).
The terms of the Fibonacci sequence are known as Fibonacci numbers. The
Given:
The given expression is
Formula used:
The recursive formula to calculate the
Here
Substitute 610 for
Conclusion:
Thus, the value of
(c)
To calculate:
The value of
Answer to Problem 1E
Solution:
The value of
Explanation of Solution
The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13 and so on, (each term is the sum of the first two preceding terms).
The terms of the Fibonacci sequence are known as Fibonacci numbers. The
Given:
The given expression is
Formula used:
The recursive formula to calculate the
Here
In the Fibonacci sequence
Substitute 89 for
Conclusion:
Thus, the value of
(d)
To calculate:
The value of
Answer to Problem 1E
Solution:
The value of
Explanation of Solution
The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13 and so on, (each term is the sum of the first two preceding terms).
The terms of the Fibonacci sequence are known as Fibonacci numbers. The
Given:
The given expression is
Formula used:
The recursive formula to calculate the
Here
Substitute 610 for
Conclusion:
Thus, the value of
(e)
To calculate:
The value of
Answer to Problem 1E
Solution:
The value of
Explanation of Solution
The Fibonacci sequence is 1, 1, 2, 3, 5, 8, 13 and so on, (each term is the sum of the first two preceding terms).
The terms of the Fibonacci sequence are known as Fibonacci numbers. The
Given:
The given expression is
Formula used:
The recursive formula to calculate the
Here
The number
Conclusion:
Thus, the value of
Want to see more full solutions like this?
Chapter 13 Solutions
EBK EXCURSIONS IN MODERN MATHEMATICS
- Find the lengths of w, x, y, and z shown in the figure below if xy=69. Round your answers to the nearest tenth. Note that the figure is not drawn to scale. w= x= z= 16 37° W 24 Х Zarrow_forwardIn each of Problems 1 through 4, draw a direction field for the given differential equation. Based on the direction field, determine the behavior of y as t → ∞. If this behavior depends on the initial value of y at t = 0, describe the dependency.1. y′ = 3 − 2yarrow_forwardA = 5.8271 ± 0.1497 = B 1.77872 ± 0.01133 C=0.57729 ± 0.00908 1. Find the relative uncertainty of A, B, and C 2. Find A-3 3. Find 7B 4. Find A + B 5. Find A B-B - 6. Find A * B 7. Find C/B 8. Find 3/A 9. Find A 0.3B - 10. Find C/T 11. Find 1/√A 12. Find AB²arrow_forward
- B 2- The figure gives four points and some corresponding rays in the xy-plane. Which of the following is true? A B Angle COB is in standard position with initial ray OB and terminal ray OC. Angle COB is in standard position with initial ray OC and terminal ray OB. C Angle DOB is in standard position with initial ray OB and terminal ray OD. D Angle DOB is in standard position with initial ray OD and terminal ray OB.arrow_forwardtemperature in degrees Fahrenheit, n hours since midnight. 5. The temperature was recorded at several times during the day. Function T gives the Here is a graph for this function. To 29uis a. Describe the overall trend of temperature throughout the day. temperature (Fahrenheit) 40 50 50 60 60 70 5 10 15 20 25 time of day b. Based on the graph, did the temperature change more quickly between 10:00 a.m. and noon, or between 8:00 p.m. and 10:00 p.m.? Explain how you know. (From Unit 4, Lesson 7.) 6. Explain why this graph does not represent a function. (From Unit 4, Lesson 8.)arrow_forwardMake up two polynomial functions, f(x) and g(x). • f(x) should be of degree 3 or higher. g(x) should be of degree 4 or higher. • Find f(3) in each of the three ways: substitution, remainder theorem (synthetic division), and long division. You should get the same answer three times for f(3). Find g(-2) once using your choice of the three methods.arrow_forward
- ere are many real-world situations that exhibit exponential and logarithmic nctions. • Describe two real world scenarios, one exponential and one logarithmic. Do not identify yet whether your scenarios are logarithmic or exponential.arrow_forwardLauris Online Back to Subject 不 4 ப 12 2 points T 35° 25° R M 4 N P 6Q 5 What is m/MNT? 120 T 12 What is the length of MR? 120 units 167:02:04 Time Remaining Yama is designing a company logo. The company president requested for the logo to be made of triangles. Yama is proposing the design shown. C 64°F Clear Q Search L 13 Ide dia des You scre Edi 12 L Tarrow_forwardstacie is a resident at a medical facility you work at. You are asked to chart the amount of solid food that she consumes.For the noon meal today, she ate 1/2 of a 3 ounce serving of meatloaf, 3/4 of her 3 ounce serving of mashed potatoes, and 1/3 of her 2 ounce serving of green beans. Show in decimal form how many ounces of solid food that Stacie consumedarrow_forward
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALAlgebra: Structure And Method, Book 1AlgebraISBN:9780395977224Author:Richard G. Brown, Mary P. Dolciani, Robert H. Sorgenfrey, William L. ColePublisher:McDougal LittellAlgebra & Trigonometry with Analytic GeometryAlgebraISBN:9781133382119Author:SwokowskiPublisher:Cengage
- College AlgebraAlgebraISBN:9781305115545Author:James Stewart, Lothar Redlin, Saleem WatsonPublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning