ACHIEVE FOR CALCULUS 4 TERM >CSI CUSTOM<
ACHIEVE FOR CALCULUS 4 TERM >CSI CUSTOM<
21st Edition
ISBN: 9781319438333
Author: Rogawski
Publisher: MAC HIGHER
Question
Book Icon
Chapter 13, Problem 1CRE
To determine

(a)

Domain of the given vector valued function.

Expert Solution
Check Mark

Answer to Problem 1CRE

Solution:

Domain of the given vector-valued function is (1,0)(0,1].

Explanation of Solution

Given:

We have been given a vector valued function:

r1(t)=t1,(t+1)1,sin1t

Key concepts used:

Domain of a rational function is all real numbers except when denominator is zero. Domain of inverse sine function is [1,1]

Calculation:

In order to find the domain of a vector valued function, we find the domains of all the components of the vector function and then we consider the intersection of all the domains.

r1(t)=t1,(t+1)1,sin1t

Domain of the first component t1=1t is all real numbers except 0. Thus, domain of the first component is (,0)(0,).

Domain of the second component (t+1)1=1t+1 is all real numbers except 1. Thus, domain of the second component is (,1)(1,).

Domain of the third component sin1t is [1,1].

For writing the domain of the entire vector valued function, we consider the intersection of all three domains. Thus, the domain of the given vector valued function is (1,0)(0,1].

Conclusion:

The domain of the given vector valued function has been found by first finding the domains of each of the components and then considering the intersection.

To determine

(b)

Domain of the given vector valued function.

Expert Solution
Check Mark

Answer to Problem 1CRE

Solution:

Domain of the given vector-valued function is (0,2].

Explanation of Solution

Given:

We have been given a vector valued function:

r2(t)=8t3,lnt,et

Key concepts used:

Domain of a rational function is all real numbers except when denominator is zero. Domain of inverse sine function is [1,1]

Calculation:

In order to find the domain of a vector valued function, we find the domains of all the components of the vector function and then we consider the intersection of all the domains.

r2(t)=8t3,lnt,et

Domain of the first component 8t3 is (,2].

Domain of the second component lnt is (0,).

Domain of the third component et is [0,).

For writing the domain of the entire vector valued function, we consider the intersection of all three domains. Thus, the domain of the given vector valued function is (0,2].

Conclusion:

The domain of the given vector valued function has been found by first finding the domains of each of the components and then considering the intersection.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Total marks 15 3. (i) Let FRN Rm be a mapping and x = RN is a given point. Which of the following statements are true? Construct counterex- amples for any that are false. (a) If F is continuous at x then F is differentiable at x. (b) If F is differentiable at x then F is continuous at x. If F is differentiable at x then F has all 1st order partial (c) derivatives at x. (d) If all 1st order partial derivatives of F exist and are con- tinuous on RN then F is differentiable at x. [5 Marks] (ii) Let mappings F= (F1, F2) R³ → R² and G=(G1, G2) R² → R² : be defined by F₁ (x1, x2, x3) = x1 + x², G1(1, 2) = 31, F2(x1, x2, x3) = x² + x3, G2(1, 2)=sin(1+ y2). By using the chain rule, calculate the Jacobian matrix of the mapping GoF R3 R², i.e., JGoF(x1, x2, x3). What is JGOF(0, 0, 0)? (iii) [7 Marks] Give reasons why the mapping Go F is differentiable at (0, 0, 0) R³ and determine the derivative matrix D(GF)(0, 0, 0). [3 Marks]
5. (i) Let f R2 R be defined by f(x1, x2) = x² - 4x1x2 + 2x3. Find all local minima of f on R². (ii) [10 Marks] Give an example of a function f: R2 R which is not bounded above and has exactly one critical point, which is a minimum. Justify briefly Total marks 15 your answer. [5 Marks]
Total marks 15 4. : Let f R2 R be defined by f(x1, x2) = 2x²- 8x1x2+4x+2. Find all local minima of f on R². [10 Marks] (ii) Give an example of a function f R2 R which is neither bounded below nor bounded above, and has no critical point. Justify briefly your answer. [5 Marks]

Chapter 13 Solutions

ACHIEVE FOR CALCULUS 4 TERM >CSI CUSTOM<

Ch. 13.1 - Prob. 5ECh. 13.1 - Prob. 6ECh. 13.1 - Prob. 7ECh. 13.1 - Prob. 8ECh. 13.1 - Prob. 9ECh. 13.1 - Prob. 10ECh. 13.1 - Prob. 11ECh. 13.1 - Prob. 12ECh. 13.1 - Prob. 13ECh. 13.1 - Prob. 14ECh. 13.1 - Prob. 15ECh. 13.1 - Prob. 16ECh. 13.1 - Prob. 17ECh. 13.1 - Prob. 18ECh. 13.1 - Prob. 19ECh. 13.1 - Prob. 20ECh. 13.1 - Prob. 21ECh. 13.1 - Prob. 22ECh. 13.1 - Prob. 23ECh. 13.1 - Prob. 24ECh. 13.1 - Prob. 25ECh. 13.1 - Prob. 26ECh. 13.1 - Prob. 27ECh. 13.1 - Prob. 28ECh. 13.1 - Prob. 29ECh. 13.1 - Prob. 30ECh. 13.1 - Prob. 31ECh. 13.1 - Prob. 32ECh. 13.1 - Prob. 33ECh. 13.1 - Prob. 34ECh. 13.1 - Prob. 35ECh. 13.1 - Prob. 36ECh. 13.1 - Prob. 37ECh. 13.1 - Prob. 38ECh. 13.1 - Prob. 39ECh. 13.1 - Prob. 40ECh. 13.1 - Prob. 41ECh. 13.1 - Prob. 42ECh. 13.1 - Prob. 43ECh. 13.1 - Prob. 44ECh. 13.1 - Prob. 45ECh. 13.1 - Prob. 46ECh. 13.1 - Prob. 47ECh. 13.1 - Prob. 48ECh. 13.1 - Prob. 49ECh. 13.1 - Prob. 50ECh. 13.1 - Prob. 51ECh. 13.1 - Prob. 52ECh. 13.1 - Prob. 53ECh. 13.2 - Prob. 1PQCh. 13.2 - Prob. 2PQCh. 13.2 - Prob. 3PQCh. 13.2 - Prob. 4PQCh. 13.2 - Prob. 5PQCh. 13.2 - Prob. 6PQCh. 13.2 - Prob. 7PQCh. 13.2 - Prob. 1ECh. 13.2 - Prob. 2ECh. 13.2 - Prob. 3ECh. 13.2 - Prob. 4ECh. 13.2 - Prob. 5ECh. 13.2 - Prob. 6ECh. 13.2 - Prob. 7ECh. 13.2 - Prob. 8ECh. 13.2 - Prob. 9ECh. 13.2 - Prob. 10ECh. 13.2 - Prob. 11ECh. 13.2 - Prob. 12ECh. 13.2 - Prob. 13ECh. 13.2 - Prob. 14ECh. 13.2 - Prob. 15ECh. 13.2 - Prob. 16ECh. 13.2 - Prob. 17ECh. 13.2 - Prob. 18ECh. 13.2 - Prob. 19ECh. 13.2 - Prob. 20ECh. 13.2 - Prob. 21ECh. 13.2 - Prob. 22ECh. 13.2 - Prob. 23ECh. 13.2 - Prob. 24ECh. 13.2 - Prob. 25ECh. 13.2 - Prob. 26ECh. 13.2 - Prob. 27ECh. 13.2 - Prob. 28ECh. 13.2 - Prob. 29ECh. 13.2 - Prob. 30ECh. 13.2 - Prob. 31ECh. 13.2 - Prob. 32ECh. 13.2 - Prob. 33ECh. 13.2 - Prob. 34ECh. 13.2 - Prob. 35ECh. 13.2 - Prob. 36ECh. 13.2 - Prob. 37ECh. 13.2 - Prob. 38ECh. 13.2 - Prob. 39ECh. 13.2 - Prob. 40ECh. 13.2 - Prob. 41ECh. 13.2 - Prob. 42ECh. 13.2 - Prob. 43ECh. 13.2 - Prob. 44ECh. 13.2 - Prob. 45ECh. 13.2 - Prob. 46ECh. 13.2 - Prob. 47ECh. 13.2 - Prob. 48ECh. 13.2 - Prob. 49ECh. 13.2 - Prob. 50ECh. 13.2 - Prob. 51ECh. 13.2 - Prob. 52ECh. 13.2 - Prob. 53ECh. 13.2 - Prob. 54ECh. 13.2 - Prob. 55ECh. 13.2 - Prob. 56ECh. 13.2 - Prob. 57ECh. 13.2 - Prob. 58ECh. 13.2 - Prob. 59ECh. 13.2 - Prob. 60ECh. 13.2 - Prob. 61ECh. 13.2 - Prob. 62ECh. 13.2 - Prob. 63ECh. 13.2 - Prob. 64ECh. 13.2 - Prob. 65ECh. 13.2 - Prob. 66ECh. 13.2 - Prob. 67ECh. 13.2 - Prob. 68ECh. 13.2 - Prob. 69ECh. 13.2 - Prob. 70ECh. 13.2 - Prob. 71ECh. 13.2 - Prob. 72ECh. 13.2 - Prob. 73ECh. 13.2 - Prob. 74ECh. 13.2 - Prob. 75ECh. 13.2 - Prob. 76ECh. 13.2 - Prob. 77ECh. 13.2 - Prob. 78ECh. 13.3 - Prob. 1PQCh. 13.3 - Prob. 2PQCh. 13.3 - Prob. 3PQCh. 13.3 - Prob. 4PQCh. 13.3 - Prob. 1ECh. 13.3 - Prob. 2ECh. 13.3 - Prob. 3ECh. 13.3 - Prob. 4ECh. 13.3 - Prob. 5ECh. 13.3 - Prob. 6ECh. 13.3 - Prob. 7ECh. 13.3 - Prob. 8ECh. 13.3 - Prob. 9ECh. 13.3 - Prob. 10ECh. 13.3 - Prob. 11ECh. 13.3 - Prob. 12ECh. 13.3 - Prob. 13ECh. 13.3 - Prob. 14ECh. 13.3 - Prob. 15ECh. 13.3 - Prob. 16ECh. 13.3 - Prob. 17ECh. 13.3 - Prob. 18ECh. 13.3 - Prob. 19ECh. 13.3 - Prob. 20ECh. 13.3 - Prob. 21ECh. 13.3 - Prob. 22ECh. 13.3 - Prob. 23ECh. 13.3 - Prob. 24ECh. 13.3 - Prob. 25ECh. 13.3 - Prob. 26ECh. 13.3 - Prob. 27ECh. 13.3 - Prob. 28ECh. 13.3 - Prob. 29ECh. 13.3 - Prob. 30ECh. 13.3 - Prob. 31ECh. 13.3 - Prob. 32ECh. 13.3 - Prob. 33ECh. 13.3 - Prob. 34ECh. 13.3 - Prob. 35ECh. 13.3 - Prob. 36ECh. 13.3 - Prob. 37ECh. 13.3 - Prob. 38ECh. 13.3 - Prob. 39ECh. 13.3 - Prob. 40ECh. 13.3 - Prob. 41ECh. 13.3 - Prob. 42ECh. 13.3 - Prob. 43ECh. 13.4 - Prob. 1PQCh. 13.4 - Prob. 2PQCh. 13.4 - Prob. 3PQCh. 13.4 - Prob. 4PQCh. 13.4 - Prob. 5PQCh. 13.4 - Prob. 6PQCh. 13.4 - Prob. 7PQCh. 13.4 - Prob. 1ECh. 13.4 - Prob. 2ECh. 13.4 - Prob. 3ECh. 13.4 - Prob. 4ECh. 13.4 - Prob. 5ECh. 13.4 - Prob. 6ECh. 13.4 - Prob. 7ECh. 13.4 - Prob. 8ECh. 13.4 - Prob. 9ECh. 13.4 - Prob. 10ECh. 13.4 - Prob. 11ECh. 13.4 - Prob. 12ECh. 13.4 - Prob. 13ECh. 13.4 - Prob. 14ECh. 13.4 - Prob. 15ECh. 13.4 - Prob. 16ECh. 13.4 - Prob. 17ECh. 13.4 - Prob. 18ECh. 13.4 - Prob. 19ECh. 13.4 - Prob. 20ECh. 13.4 - Prob. 21ECh. 13.4 - Prob. 22ECh. 13.4 - Prob. 23ECh. 13.4 - Prob. 24ECh. 13.4 - Prob. 25ECh. 13.4 - Prob. 26ECh. 13.4 - Prob. 27ECh. 13.4 - Prob. 28ECh. 13.4 - Prob. 29ECh. 13.4 - Prob. 30ECh. 13.4 - Prob. 31ECh. 13.4 - Prob. 32ECh. 13.4 - Prob. 33ECh. 13.4 - Prob. 34ECh. 13.4 - Prob. 35ECh. 13.4 - Prob. 36ECh. 13.4 - Prob. 37ECh. 13.4 - Prob. 38ECh. 13.4 - Prob. 39ECh. 13.4 - Prob. 40ECh. 13.4 - Prob. 41ECh. 13.4 - Prob. 42ECh. 13.4 - Prob. 43ECh. 13.4 - Prob. 44ECh. 13.4 - Prob. 45ECh. 13.4 - Prob. 46ECh. 13.4 - Prob. 47ECh. 13.4 - Prob. 48ECh. 13.4 - Prob. 49ECh. 13.4 - Prob. 50ECh. 13.4 - Prob. 51ECh. 13.4 - Prob. 52ECh. 13.4 - Prob. 53ECh. 13.4 - Prob. 54ECh. 13.4 - Prob. 55ECh. 13.4 - Prob. 56ECh. 13.4 - Prob. 57ECh. 13.4 - Prob. 58ECh. 13.4 - Prob. 59ECh. 13.4 - Prob. 60ECh. 13.4 - Prob. 61ECh. 13.4 - Prob. 62ECh. 13.4 - Prob. 63ECh. 13.4 - Prob. 64ECh. 13.4 - Prob. 65ECh. 13.4 - Prob. 66ECh. 13.4 - Prob. 67ECh. 13.4 - Prob. 68ECh. 13.4 - Prob. 69ECh. 13.4 - Prob. 70ECh. 13.4 - Prob. 71ECh. 13.4 - Prob. 72ECh. 13.4 - Prob. 73ECh. 13.4 - Prob. 74ECh. 13.4 - Prob. 75ECh. 13.4 - Prob. 76ECh. 13.4 - Prob. 77ECh. 13.4 - Prob. 78ECh. 13.4 - Prob. 79ECh. 13.4 - Prob. 80ECh. 13.4 - Prob. 81ECh. 13.4 - Prob. 82ECh. 13.4 - Prob. 83ECh. 13.4 - Prob. 84ECh. 13.4 - Prob. 85ECh. 13.4 - Prob. 86ECh. 13.4 - Prob. 87ECh. 13.4 - Prob. 88ECh. 13.4 - Prob. 89ECh. 13.4 - Prob. 90ECh. 13.4 - Prob. 91ECh. 13.4 - Prob. 92ECh. 13.4 - Prob. 93ECh. 13.5 - Prob. 1PQCh. 13.5 - Prob. 2PQCh. 13.5 - Prob. 3PQCh. 13.5 - Prob. 4PQCh. 13.5 - Prob. 5PQCh. 13.5 - Prob. 6PQCh. 13.5 - Prob. 7PQCh. 13.5 - Prob. 1ECh. 13.5 - Prob. 2ECh. 13.5 - Prob. 3ECh. 13.5 - Prob. 4ECh. 13.5 - Prob. 5ECh. 13.5 - Prob. 6ECh. 13.5 - Prob. 7ECh. 13.5 - Prob. 8ECh. 13.5 - Prob. 9ECh. 13.5 - Prob. 10ECh. 13.5 - Prob. 11ECh. 13.5 - Prob. 12ECh. 13.5 - Prob. 13ECh. 13.5 - Prob. 14ECh. 13.5 - Prob. 15ECh. 13.5 - Prob. 16ECh. 13.5 - Prob. 17ECh. 13.5 - Prob. 18ECh. 13.5 - Prob. 19ECh. 13.5 - Prob. 20ECh. 13.5 - Prob. 21ECh. 13.5 - Prob. 22ECh. 13.5 - Prob. 23ECh. 13.5 - Prob. 24ECh. 13.5 - Prob. 25ECh. 13.5 - Prob. 26ECh. 13.5 - Prob. 27ECh. 13.5 - Prob. 28ECh. 13.5 - Prob. 29ECh. 13.5 - Prob. 30ECh. 13.5 - Prob. 31ECh. 13.5 - Prob. 32ECh. 13.5 - Prob. 33ECh. 13.5 - Prob. 34ECh. 13.5 - Prob. 35ECh. 13.5 - Prob. 36ECh. 13.5 - Prob. 37ECh. 13.5 - Prob. 38ECh. 13.5 - Prob. 39ECh. 13.5 - Prob. 40ECh. 13.5 - Prob. 41ECh. 13.5 - Prob. 42ECh. 13.5 - Prob. 43ECh. 13.5 - Prob. 44ECh. 13.5 - Prob. 45ECh. 13.5 - Prob. 46ECh. 13.5 - Prob. 47ECh. 13.5 - Prob. 48ECh. 13.5 - Prob. 49ECh. 13.5 - Prob. 50ECh. 13.5 - Prob. 51ECh. 13.5 - Prob. 52ECh. 13.5 - Prob. 53ECh. 13.5 - Prob. 54ECh. 13.5 - Prob. 55ECh. 13.5 - Prob. 56ECh. 13.5 - Prob. 57ECh. 13.5 - Prob. 58ECh. 13.5 - Prob. 59ECh. 13.5 - Prob. 60ECh. 13.5 - Prob. 61ECh. 13.6 - Prob. 1PQCh. 13.6 - Prob. 2PQCh. 13.6 - Prob. 3PQCh. 13.6 - Prob. 1ECh. 13.6 - Prob. 2ECh. 13.6 - Prob. 3ECh. 13.6 - Prob. 4ECh. 13.6 - Prob. 5ECh. 13.6 - Prob. 6ECh. 13.6 - Prob. 7ECh. 13.6 - Prob. 8ECh. 13.6 - Prob. 9ECh. 13.6 - Prob. 10ECh. 13.6 - Prob. 11ECh. 13.6 - Prob. 12ECh. 13.6 - Prob. 13ECh. 13.6 - Prob. 14ECh. 13.6 - Prob. 15ECh. 13.6 - Prob. 16ECh. 13.6 - Prob. 17ECh. 13.6 - Prob. 18ECh. 13.6 - Prob. 19ECh. 13.6 - Prob. 20ECh. 13.6 - Prob. 21ECh. 13.6 - Prob. 22ECh. 13.6 - Prob. 23ECh. 13.6 - Prob. 24ECh. 13.6 - Prob. 25ECh. 13 - Prob. 1CRECh. 13 - Prob. 2CRECh. 13 - Prob. 3CRECh. 13 - Prob. 4CRECh. 13 - Prob. 5CRECh. 13 - Prob. 6CRECh. 13 - Prob. 7CRECh. 13 - Prob. 8CRECh. 13 - Prob. 9CRECh. 13 - Prob. 10CRECh. 13 - Prob. 11CRECh. 13 - Prob. 12CRECh. 13 - Prob. 13CRECh. 13 - Prob. 14CRECh. 13 - Prob. 15CRECh. 13 - Prob. 16CRECh. 13 - Prob. 17CRECh. 13 - Prob. 18CRECh. 13 - Prob. 19CRECh. 13 - Prob. 20CRECh. 13 - Prob. 21CRECh. 13 - Prob. 22CRECh. 13 - Prob. 23CRECh. 13 - Prob. 24CRECh. 13 - Prob. 25CRECh. 13 - Prob. 26CRECh. 13 - Prob. 27CRECh. 13 - Prob. 28CRECh. 13 - Prob. 29CRECh. 13 - Prob. 30CRECh. 13 - Prob. 31CRECh. 13 - Prob. 32CRECh. 13 - Prob. 33CRECh. 13 - Prob. 34CRECh. 13 - Prob. 35CRECh. 13 - Prob. 36CRECh. 13 - Prob. 37CRECh. 13 - Prob. 38CRECh. 13 - Prob. 39CRECh. 13 - Prob. 40CRECh. 13 - Prob. 41CRECh. 13 - Prob. 42CRE
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning
Text book image
Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON
Text book image
Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman
Text book image
Precalculus
Calculus
ISBN:9780135189405
Author:Michael Sullivan
Publisher:PEARSON
Text book image
Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning