Concept explainers
Interpretation:
The affect on the density of the gas should be determined when the temperature of gas in a sealed, rigid container increases.
Whether the results will be the same when the same experiment in a container with a movable piston at a constant external pressure takes place should be explained.
Concept introduction:
The results can be explained using the
The ideal gas equation:
PV = nRT
Where, V is the volume of the gas.
P is the pressure of the gas.
n is the number of moles of the gas.
R is the gas constant.
and T is the temperature.
Answer to Problem 1ALQ
In first experiment density of the gas will remain the same
In the second experiment density of the gas will decrease.
Explanation of Solution
The ideal gas equation
PV = nRT
or n/V = P/RT
Or, P/RT = d (where d is the density of the gas)
An increase in temperature will normally cause an increase in the volume. However, because the gas is enclosed in a rigid container the volume of the container cannot increase. Therefore, due to the increase in temperature, molecular momentum of air molecules also increases which further results in increase in the pressure inside container. Now, the density of a gas is the ratio of mass to its volume. If neither the mass nor the volume change as the can is heated, there will be no change in the density of the gas.
When the gas is heated in a container with a movable piston, the volume of the gas will also increase. Now, density is defined as d = m/V. Therefore, an increase in the volume will cause a decrease in the density of the gas.
Therefore, based on the ideal gas equation, when the gas is heated in a sealed container the density of the gas will remain constant.
However, when the gas is heated in a container with a movable piston, the density of the gas will decrease.
Want to see more full solutions like this?
Chapter 13 Solutions
Introductory Chemistry >IC<
- How many different molecules are drawn below?arrow_forwardWith the reference to a anion A, Label compounds B-F as an isomer or resonance strcuture of A. FOr each isomer indicate what bonds differs from A. Provide steps and undertanding on how you come up with work.arrow_forwardProvide steps and also tips to undertand how to do on my own. Add the correct number of hydrogen atoms for each carbon atom and lone pairs to each oxygen atom.arrow_forward
- A mixture of oxygen and ethyne is burnt for welding tell why mixture of ethyne and air is not usedarrow_forwardQ2: Draw all applicable resonance forms for the acetate ion CH3COO. Clearly show all lone pairs, charges, and arrow formalism.arrow_forwardIn the following molecule, indicate the hybridization and shape of the indicated atoms. -z: CH3 CH 3 HO: H3C :Ö: CIarrow_forward
- Show mechanism with explanation. don't give Ai generated solutionarrow_forwardPlease Help!!!arrow_forwardQ2: Resonance Forms a) Draw all resonance forms of the molecules. Include curved arrow notation. Label major resonance contributor. SO2 NO3 Page 3 of 4 Chem 0310 Organic Chemistry 1 HW Problem Sets CH3NSO (Thionitromethane, skeleton on the right) H N H3C Sarrow_forward
- A 10.00-mL pipet was filled to the mark with distilled water at the lab temperature of 22 oC. The water, delivered to a tared weighing bottle was found to weigh 9.973 g. The density of water at 22 oC is 0.99780 g/mL. Calculate the volume of the pipet in mL. (disregard air displacement for this calculation and record your answer to the proper number of significant digits.)arrow_forwardResonance Formsa) Draw all resonance forms of the molecules. Include curved arrow notation. Label majorresonance contributor.arrow_forwardShow work with explanation needed. Don't give Ai generated solutionarrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning