
Concept explainers
Interpretation:
The affect on the density of the gas should be determined when the temperature of gas in a sealed, rigid container increases.
Whether the results will be the same when the same experiment in a container with a movable piston at a constant external pressure takes place should be explained.
Concept introduction:
The results can be explained using the
The ideal gas equation:
PV = nRT
Where, V is the volume of the gas.
P is the pressure of the gas.
n is the number of moles of the gas.
R is the gas constant.
and T is the temperature.

Answer to Problem 1ALQ
In first experiment density of the gas will remain the same
In the second experiment density of the gas will decrease.
Explanation of Solution
The ideal gas equation
PV = nRT
or n/V = P/RT
Or, P/RT = d (where d is the density of the gas)
An increase in temperature will normally cause an increase in the volume. However, because the gas is enclosed in a rigid container the volume of the container cannot increase. Therefore, due to the increase in temperature, molecular momentum of air molecules also increases which further results in increase in the pressure inside container. Now, the density of a gas is the ratio of mass to its volume. If neither the mass nor the volume change as the can is heated, there will be no change in the density of the gas.
When the gas is heated in a container with a movable piston, the volume of the gas will also increase. Now, density is defined as d = m/V. Therefore, an increase in the volume will cause a decrease in the density of the gas.
Therefore, based on the ideal gas equation, when the gas is heated in a sealed container the density of the gas will remain constant.
However, when the gas is heated in a container with a movable piston, the density of the gas will decrease.
Want to see more full solutions like this?
Chapter 13 Solutions
Introductory Chemistry
- > You are trying to decide if there is a single reagent you can add that will make the following synthesis possible without any other major side products: 1. ☑ CI 2. H3O+ O Draw the missing reagent X you think will make this synthesis work in the drawing area below. If there is no reagent that will make your desired product in good yield or without complications, just check the box under the drawing area and leave it blank. Click and drag to start drawing a structure. Explanation Check ? DO 18 Ar B © 2025 McGraw Hill LLC. All Rights Reserved. Terms of Use | Privacy Center | Accessibilityarrow_forwardDon't use ai to answer I will report you answerarrow_forwardConsider a solution of 0.00304 moles of 4-nitrobenzoic acid (pKa = 3.442) dissolved in 25 mL water and titrated with 0.0991 M NaOH. Calculate the pH at the equivalence pointarrow_forward
- What is the name of the following compound? SiMe3arrow_forwardK Draw the starting structure that would lead to the major product shown under the provided conditions. Drawing 1. NaNH2 2. PhCH2Br 4 57°F Sunny Q Searcharrow_forward7 Draw the starting alkyl bromide that would produce this alkyne under these conditions. F Drawing 1. NaNH2, A 2. H3O+ £ 4 Temps to rise Tomorrow Q Search H2arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry for Engineering StudentsChemistryISBN:9781337398909Author:Lawrence S. Brown, Tom HolmePublisher:Cengage LearningWorld of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage Learning




