Engineering Fundamentals
Engineering Fundamentals
6th Edition
ISBN: 9780357112144
Author: Saeed Moaveni
Publisher: MISC PUBS
bartleby

Concept explainers

Question
Book Icon
Chapter 13, Problem 19P
To determine

Find the amount of natural gas required in ft3 and lbm for generating for electricity for each year.

Expert Solution & Answer
Check Mark

Answer to Problem 19P

The amount of natural gas required in ft3 and lbm for generating for electricity for each year is calculated and tabulated in Table 1.

Explanation of Solution

Given data:

Refer to problem 13-19 accompanying table in the textbook.

The average efficiency of the power plant is 35%.

The heating value of the natural gas is 1000Btuft3(22000Btulbm).

Formula used:

Formula to calculate the power plant efficiency is,

Powerplanteffeicency=EnergygeneratedEnergyinputfromfuel

Rearrange the equation,

Energyinputfromfuel=Energygeneratedpowerplanteffeicency (1)

Convert Btu to lbm,

1Btu=122000lbm[22000Btulbm=1]=4.5454×105lbm (2)

Convert lbm to ft3,

1000Btuft3=22000Btulbm10001ft3=220001lbm1ft3=221lbm1lbm=22ft3 (3)

The value of the 1Btus is,

1Btus=1.055kW (4)

Convert 1 hr into seconds,

1hr=3600s

Rearrange the equation,

1s=13600hr (5)

Substitute equation (5) in equation (4),

1Btu13600hr=1.055kW1Btu=1.0553600kWhr1Btu=2.93×104kWhr

Rearrange the equation,

1kWhr=12.93×104Btu=3412.96Btu

Calculation:

Converting the given data from kWh to Btu:

Substitute 3412.96Btu for 1kWhr in 346.2399×109kWhr for the year 1980,

346.2399×109kWhr=(346.2399×109)(3412.96Btu)=1.181702929×1015Btu=1181702.929×109Btu

Substitute 3412.96Btu for 1kWhr in 372.7652×109kWhr for the year 1990,

372.7652×109kWhr=(372.7652×109)(3412.96Btu)=1.272232717×1015Btu=1272232.717×109Btu

Substitute 3412.96Btu for 1kWhr in 601.0382×109kWhr for the year 2000,

601.0382×109kWhr=(601.0382×109)(3412.96Btu)=2.051319335×1015Btu=2051319.335×109Btu

Substitute 3412.96Btu for 1kWhr in 751.8189×109kWhr for the year 2005,

751.8189×109kWhr=(751.8189×109kWhr)(3412.96Btu)=2.565927833×1015Btu=2565927.833×109Btu

Substitute 3412.96Btu for 1kWhr in 773.8234×109kWhr for the year 2010,

773.8234×109kWhr=(773.8234×109)(3412.96Btu)=2.641028311×1015Btu=2641028.311×109Btu

Substitute 3412.96Btu for 1kWhr in 1102.762×109kWhr for the year 2020,

1102.762×109kWhr=(1102.762×109)(3412.96Btu)=3.763682596×1015Btu=3763682.596×109Btu

Substitute 3412.96Btu for 1kWhr in 992.7706×109kWhr for the year 2030,

992.7706×109kWhr=(992.7706×109)(3412.96Btu)=3.388286347×1015Btu=3388286.347×109Btu

Now find the energy input fuel for each year in Btu for natural gas:

Substitute 1181702.929×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel in 1980,

Energyinputfromfuel=1181702.929×109Btu0.35=3.376294083×1015BtuEnergyinputfromfuel=3376294.083×109Btu

Substitute 1272232.717×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 1990,

Energyinputfromfuel=1272232.717×109Btu0.35=3.63495062×1015BtuEnergyinputfromfuel=3634950.62×109Btu

Substitute 2051319.335×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2000,

Energyinputfromfuel=2051319.335×109Btu0.35=5.860912386×1015BtuEnergyinputfromfuel=5860912.386×109Btu

Substitute 2565927.833×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2005,

Energyinputfromfuel=2565927.833×109Btu0.35=7.33122238×1015BtuEnergyinputfromfuel=7331222.38×109Btu

Substitute 2641028.311×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2010,

Energyinputfromfuel=2641028.311×109Btu0.35=7.545795174×1015BtuEnergyinputfromfuel=7545795.174×109Btu

Substitute 3763682.596×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2020,

Energyinputfromfuel=3763682.596×109Btu0.35=1.075337885×1016BtuEnergyinputfromfuel=10753378.85×109Btu

Substitute 3388326.347×109Btu for energy generated and 0.35 for power plant efficiency in equation (1) to find energy input from fuel 2030,

Energyinputfromfuel=3388286.347×109Btu0.35=9680818.134×109Btu

Now convert Btu to lbm as follows by using the relation 1Btu=4.5454×105lbm,

Substitute 4.5454×105lbm for 1 Btu in 3376294.083×109Btu for the year 1980,

3376294.083×109Btu=(3376294.083×109)(4.5454×105lbm)=1.5346607×1011lbm1.53×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 3634950.62×109Btu for the year 1990,

3634950.62×109Btu=(3634950.62×109)(4.5454×105lbm)=1.652230×1011lbm1.65×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 5860912.386×109Btu for the year 2000,

5860912.386×109Btu=(5860912.386×109)(4.5454×105lbm)=2.664019×1011lbm2.66×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 7331222.38×109Btu for the year 2005,

7331222.38×109Btu=(7331222.38×109)(4.5454×105lbm)=3.3323×1011lbm3.33×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 7545795.174×109Btu for the year 2010,

7545795.174×109Btu=(7545795.174×109)(4.5454×105lbm)=3.429865×1011lbm3.43×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 10753378.85×109Btu for the year 2020,

10753378.85×109Btu=(10753378.85×109)(4.5454×105lbm)=4.88784×1011lbm4.89×1011lbm

Substitute 4.5454×105lbm for 1 Btu in 9680818.134×109Btu for the year 2030,

9680818.134×109Btu=(9680818.134×109)(4.5454×105lbm)=4.4003190×1011lbm4.40×1011lbm

Now convert Form lbm to ft3 by using the relation 1lbm=22ft3 as follows,

Substitute 22ft3 for 1 lbm in 1.5346607×1011lbm for the year 1980,

1.5346607×1011lbm=(1.5346607×1011)(22ft3)=3.37625×1012ft33.38×1012ft3

Substitute 22ft3 for 1 lbm in 1.652230×1012lbm for the year 1990,

1.652230×1011lbm=(1.652230×1011)(22ft3)=3.6354906×1012ft33.63×1012ft3

Substitute 22ft3 for 1 lbm in 2.664019×1012lbm for the year 2000,

2.664019×1011lbm=(2.664019×1011)(22ft3)=5.8608418×1012ft35.86×1012ft3

Substitute 22ft3 for 1 lbm in 3.33233×1010lbm for the year 2005,

3.33233×1011lbm=(3.33233×1011)(22ft3)=7.331126×1012ft37.33×1012ft3

Substitute 22ft3 for 1 lbm in 3.429865×1011lbm for the year 2010,

3.429865×1011lbm=(3.429865×1011)(22ft3)=7.545703×1012ft37.55×1012ft3

Substitute 22ft3 for 1 lbm in 4.88784×1011lbm for the year 2020,

4.88784×1011lbm=(4.88784×1011)(22ft3)=1.0753358×1013ft31.08×1013ft3

Substitute 22ft3 for 1 lbm in 4.400319×1011lbm for the year 2030,

4.400319×1011lbm=(4.400319×1011)(22ft3)=9.6807018×1012ft39.68×1012ft3

Therefore, the amount of natural gas in ft3 and lbm for generating electricity for each year required is tabulated as in Table 1 with approximately rounded values for amount of natural gas needed in lbm and amount of natural gas needed in ft3.

Engineering Fundamentals, Chapter 13, Problem 19P

Conclusion:

Hence, the amount of natural gas in ft3 and lbm for generating electricity for each year has been calculated.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
A home is heated with propane with a 100,000 BTU furnace size and 95% efficiency. The monthly heating degree days is 5000. Using the energy estimation discussed in this chapter, estimate the monthly and annual gas consumption to heat the building if the home is to be kept 68°F.
Consider a 400-MW, 32 percent efficient coal-fired power plant that uses cooling water withdrawn from a nearby river (with an upstream flow of 10-m3/s and temperature 20 °C) to take care of waste heat. The heat content of the coal is 8,000 Btu/lb, the carbon content is 60% by mass, and the sulfur content is 2% by mass. How much electricity (in kWh/yr) would the plant produce each year? How many pounds per hour of coal would need to be burned at the plant? Estimate the annual carbon emissions from the plant (in metric tons C/year). If the cooling water is only allowed to rise in temperature by 10 °C, what flow rate (in m3/s) from the stream would be required?  What would be the river temperature if all the waste heat was transferred to the river water assuming no heat losses during transfer?  Estimate the hourly SO2 emissions (in kg/h) from the plant assuming that all the sulfur is oxidized to SO2 during combustion.
For a building located in Madrid, Spain with annual heating degree-days (dd) of 4654, a heating load (heat loss) of 30,000 kj/h, and a design temperature difference of 30° C (20° C indoor), estimate the annual energy consumption. If the building is heated with a furnace with an efficiency of 92%, how muchgas is burned to keep the home at 20° C? State your assumptions.
Knowledge Booster
Background pattern image
Civil Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, civil-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Engineering Fundamentals: An Introduction to Engi...
Civil Engineering
ISBN:9781305084766
Author:Saeed Moaveni
Publisher:Cengage Learning
Text book image
Sustainable Energy
Civil Engineering
ISBN:9781337551663
Author:DUNLAP, Richard A.
Publisher:Cengage,