![WebAssign Homework Only for Moaveni's Engineering Fundamentals: An Introduction to Engineering, SI Edition, 6th Edition, [Instant Access]](https://www.bartleby.com/isbn_cover_images/9780357126677/9780357126677_largeCoverImage.gif)
Concept explainers
Find the amount of coal (in kg) required for generating for each year.
![Check Mark](/static/check-mark.png)
Answer to Problem 17P
The amount of coal (in kg) required for generating electricity for each year are calculated and tabulated in Table 1.
Explanation of Solution
Given data:
Refer to problem 13-17 accompanying table in the textbook, the average efficiency of the power plants is 35%.
The heating value of the coal is
Formula used:
Formula to calculate the power plant efficiency is,
Rearrange the equation,
Convert kWh to MJ,
Formula to calculate the amount of coal required for generating one year is,
Calculation:
Find the energy input from the fuel in each year:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Now convert all the values from kWh to MJ:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Now find the amount of coal required in every year:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the energy input for all years for Coal, in kWh and MJ along with coal required to produce 35% of efficiency is shown in Table 1 (with approximately rounded values).
Table 1
Energy Produced (10^9 kWh) | Energy(considering efficiency) 109 kWh | Energy (considering efficiency) 109 MJ | Amount of coal needed in kg |
1161.562 | 3318.748571 | 11947.49486 | 1.59E+12 |
1594.011 | 4554.317143 | 16395.54171 | 2.19E+12 |
1966.265 | 5617.9 | 20224.44 | 2.70E+12 |
2040.913 | 5831.18 | 20992.248 | 2.80E+12 |
2217.555 | 6335.871429 | 22809.13714 | 3.04E+12 |
2504.786 | 7156.531429 | 25763.51314 | 3.44E+12 |
3380.674 | 9569.068571 | 34772.64686 | 4.64E+12 |
Conclusion:
Hence, the amount of coal (in kg) required for generating electricity for each year has been calculated.
Want to see more full solutions like this?
Chapter 13 Solutions
WebAssign Homework Only for Moaveni's Engineering Fundamentals: An Introduction to Engineering, SI Edition, 6th Edition, [Instant Access]
- 4-39. Draw the shear and moment diagrams for each of the three members of the frame. Assume the frame is pin connected at A, C, and D and there is a fixed joint at B. 4 m 50 kN 40 kN -1.5 m -2 m 1.5 B 15 kN/m 6 m Darrow_forwardAggregates from three sources having the properties shown in Table P5.41were blended at a ratio of 25:60:15 by weight. Determine the properties of theaggregate blend.arrow_forward7-7. Determine the equations of the elastic curve for the beam using the x and x, coordinates. Specify the beam's maximum deflection. El is constant. 22arrow_forward
- The cantilever beam shown below supports a uniform service (unfactored) dead load of 1.5 kip/ft plus its own self weight, plus two unknown concentrated service (unfactored) live loads, as shown. The concrete has f’c = 6,000 psi and the steel yield strength is 60 ksi. a. Determine the design moment capacity. b. Set up the applied bending moment capacity. c. Calculate maximum safe concentrated live load that the beam may carry.arrow_forwardThe circular slab of radius r supported by four columns, as shown in figure, is to be isotropically reinforced. Find the ultimate resisting moment (m) per linear meter required just to sustain a concentrated factored load of P kN applied at the center of the slab. Solve by using equilibrium m m Columnarrow_forwardBy using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a uniform load (q). Solve by using equilibrium method m marrow_forward
- By using the yield line theory, determine the ultimate resisting moment per linear meter (m) for an isotropic reinforced concrete two-way simply supported polygon slab shown in figure under a concentrated factored load of P. Solve by Using equilibrium method m m 8/arrow_forwardH.W: Evaluate the integral 1. 30 √ · √(x²y – 2xy)dydx 0-2 3 1 3. (2x-4y)dydx 1-1 2π π 5. (sinx + cosy)dxdy π 0 0 1 ƒ ƒ (x + 2. +y+1)dxdy 4. -1-1 41 ][ 20 x²ydxdyarrow_forwardExample 5 By using the yield line theory, determine the moment (m) for an isotropic reinforced concrete two-way slab (supports on two S.S sides shown in figure under the load (P) (all dimensions are in mm). Solve by using equilibrium method Please solve by using equilibrium method m m 3000 2000 2000arrow_forward
- 2. During construction, gate AB is temporarily held in place by the horizontal strut CD. Determine the force in the strut CD, if the gate is 3.0-m wide. A 0 B D Density of water = 103 kg/m³ 2 m 3 marrow_forward5. A gate is used to hold water as shown. The gate is rectangular and is 8-ft wide. Neglect the weight of the gate. Determine at what depth the gate is just about to open. 5000 Ib 15 ft Hinge 60°arrow_forwardH.W2. Design Twin Opening of an Inverted Siphon (8 + 27 +6) m required to pass Canal Discharge of 3m³/ sec under road with 0.18m Head Loss. The Velocity in the Canal is 0.78m/sec and the depth of water in the canal is 1.4m, Safety Screen is provided from entry and exit. The Inverted Siphon 22.5 ° ELBOWS of each end. IF n = 0.013, Ke= 0.2, Ko = 0.3, Kscreen Kelbows 0.05. = 0.2 andarrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage LearningSustainable EnergyCivil EngineeringISBN:9781133108689Author:Richard A. DunlapPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305084766/9781305084766_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337551663/9781337551663_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133108689/9781133108689_smallCoverImage.gif)