Concept explainers
Convert the given sources data in the Table accompanied for the problems 13.14 to 13.20 in the textbook from Billions of kilowatt-hours to Billions of Btu.

Answer to Problem 16P
The given sources data in the Table accompanied for the problems 13.14 to 13.20 in the textbook from Billions of kilowatt-hours to Billions of Btu are tabulated in Table 1.
Explanation of Solution
Given data:
Refer to the problem 13.16 in textbook for the accompanying table.
Formula used:
The value of the
Convert 1 hr into seconds,
Rearrange the equation,
Calculation:
Substitute equation (2) in equation (1),
Rearrange the equation for the relation between kWhr to Btu.
For coal:
All the following calculations of conversion are in Billions.
Coal for the year 1980 is,
Substitute
Coal for the year 1990 is,
Substitute
Coal for the year 2000 is,
Substitute
Coal for the year 2005 is,
Substitute
Coal for the year 2010 is,
Substitute
Coal for the year 2020 is,
Substitute
The coal for the year 2030 is,
Substitute
For petroleum:
All the following calculations of conversion are in Billions.
Petroleum for the year 1980 is,
Substitute
Petroleum for the year 1990 is,
Substitute
Petroleum for the year 2000 is,
Substitute
Petroleum for the year 2005 is,
Substitute
Petroleum for the year 2010 is,
Substitute
Petroleum for the year 2020 is,
Substitute
Petroleum for the year 2030 is,
Substitute
For Natural gas:
All the following calculations of conversion are in Billions.
Natural gas for the year 1980 is,
Substitute
Natural gas for the year 1990 is,
Substitute
Natural gas for the year 2000 is,
Substitute
Natural gas for the year 2000 is,
Substitute
Natural gas for the year 2010 is,
Substitute
Natural gas for the year 2020 is,
Substitute
Natural gas for the year 2030 is,
Substitute
For Nuclear:
All the following calculations of conversion are in Billions.
Nuclear of the year 1980 is,
Substitute
Nuclear of the year 1990 is,
Substitute
Nuclear of the year 2000 is,
Substitute
Nuclear of the year 2005 is,
Substitute
Nuclear of the year 2010 is,
Substitute
Nuclear of the year 2020 is,
Substitute
Nuclear of the year 2030 is,
Substitute
For Renewable/Others:
All the following calculations of conversion are in Billions.
Renewable of the year 1980 is,
Substitute
Renewable of the year 1990 is,
Substitute
Renewable of the year 2000 is,
Substitute
Renewable of the year 2005 is,
Substitute
Renewable of the year 2010 is,
Substitute
Renewable of the year 2020 is,
Substitute
Renewable of the year 2030 is,
Substitute
Therefore, the conversion from the Billions of kilowatt-hours to Billions of Btu is tabulated in Table 1 as below,
Table 1
Year | Coal | Petroleum | Natural Gas | Nuclear | Renewable/Other |
1980 | 3964364.644 | 839568.365 | 1181702.929 | 857047.498 | 971629.780 |
1990 | 5440295.783 | 432152.749 | 1272232.717 | 1968805.908 | 1219239.346 |
2000 | 6710783.794 | 379592.824 | 2051319.335 | 2573006.312 | 1216647.203 |
2005 | 6965554.432 | 393945.686 | 2565927.833 | 2641878.821 | 1282816.647 |
2010 | 7568426.513 | 357740.324 | 2641028.311 | 2760043.005 | 1623692.512 |
2020 | 8548734.427 | 364094.232 | 3763682.596 | 2971657.446 | 1758194.194 |
2030 | 11538105.135 | 391378.116 | 3388286.347 | 2971291.918 | 1908300.270 |
Conclusion:
Hence, the conversion for the energy sources from billions kilowatt-hours to billion Btu has been explained.
Want to see more full solutions like this?
Chapter 13 Solutions
EBK ENGINEERING FUNDAMENTALS: AN INTROD
- What are the total earned work hours at completion for the column forms?arrow_forward6000 units have been installed to date with 9,000 units to install. Labor costs are $23,300.00 to date. What is the unit cost for labor to date?arrow_forwardThe base rate for labor is $15/hr. The labor burden is 35% and 3% for small tools for the labor. There are 1000 units to install. Records indicate that trade workers can install 10 units per hour, per trade worker. The owners need 15% overhead and profit to pay bills, pay interest on loan and provide some profit to the partners. What is the minimum bid assuming no risk avoidance factor?arrow_forward
- 5. (20 Points) Consider a channel width change in the same 7-foot wide rectangular in Problem 4. The horizontal channel narrows as depicted below. The flow rate is 90 cfs, and the energy loss (headloss) through the transition is 0.05 feet. The water depth at the entrance to the transition is initially 4'. 1 b₁ TOTAL ENERGY LINE V² 129 У1 I b₂ TOP VIEW 2 PROFILE VIEW h₁ = 0.05 EGL Y₂ = ? a) b) c) 2 Determine the width, b₂ that will cause a choke at location 2. Determine the water depth at the downstream end of the channel transition (y₂) section if b₂ = 5 feet. Calculate the change in water level after the transition. Plot the specific energy diagram showing all key points. Provide printout in homework. d) What will occur if b₂ = = 1.5 ft.?arrow_forward4. (20 Points) A transition section has been proposed to raise the bed level a height Dz in a 7-foot wide rectangular channel. The design flow rate in the channel is 90 cfs, and the energy loss (headloss) through the transition is 0.05 feet. The water depth at the entrance to the transition section is initially 4 feet. b₁ = b = b2 1 TOTAL ENERGY LINE V² 129 Ут TOP VIEW 2 hloss = 0.05 " EGL Y₂ = ? PROFILE VIEW a) Determine the minimum bed level rise, Dz, which will choke the flow. b) If the step height, Dz = 1 ft, determine the water depth (y2) at the downstream end of the channel transition section. Calculate the amount the water level drops or rises over the step. c) Plot the specific energy diagram showing all key points. Provide printout in Bework. d) What will occur if Dz = 3.0 ft.?. Crest Front Viewarrow_forward1. (20 Points) Determine the critical depth in the trapezoidal drainage ditch shown below. The slope of the ditch is 0.0016, the side slopes are 1V:2.5H, the bottom width is b = 14', and the design discharge is 500 cfs. At this discharge the depth is y = 4.25'. Also, determine the flow regime and calculate the Froude number. Ye= ? Z barrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning

