Concept explainers
Convert the given sources data in the Table accompanied for the problems 13.14 to 13.20 in the textbook from Billions of kilowatt-hours to Billions of Btu.

Answer to Problem 16P
The given sources data in the Table accompanied for the problems 13.14 to 13.20 in the textbook from Billions of kilowatt-hours to Billions of Btu are tabulated in Table 1.
Explanation of Solution
Given data:
Refer to the problem 13.16 in textbook for the accompanying table.
Formula used:
The value of the
Convert 1 hr into seconds,
Rearrange the equation,
Calculation:
Substitute equation (2) in equation (1),
Rearrange the equation for the relation between kWhr to Btu.
For coal:
All the following calculations of conversion are in Billions.
Coal for the year 1980 is,
Substitute
Coal for the year 1990 is,
Substitute
Coal for the year 2000 is,
Substitute
Coal for the year 2005 is,
Substitute
Coal for the year 2010 is,
Substitute
Coal for the year 2020 is,
Substitute
The coal for the year 2030 is,
Substitute
For petroleum:
All the following calculations of conversion are in Billions.
Petroleum for the year 1980 is,
Substitute
Petroleum for the year 1990 is,
Substitute
Petroleum for the year 2000 is,
Substitute
Petroleum for the year 2005 is,
Substitute
Petroleum for the year 2010 is,
Substitute
Petroleum for the year 2020 is,
Substitute
Petroleum for the year 2030 is,
Substitute
For Natural gas:
All the following calculations of conversion are in Billions.
Natural gas for the year 1980 is,
Substitute
Natural gas for the year 1990 is,
Substitute
Natural gas for the year 2000 is,
Substitute
Natural gas for the year 2000 is,
Substitute
Natural gas for the year 2010 is,
Substitute
Natural gas for the year 2020 is,
Substitute
Natural gas for the year 2030 is,
Substitute
For Nuclear:
All the following calculations of conversion are in Billions.
Nuclear of the year 1980 is,
Substitute
Nuclear of the year 1990 is,
Substitute
Nuclear of the year 2000 is,
Substitute
Nuclear of the year 2005 is,
Substitute
Nuclear of the year 2010 is,
Substitute
Nuclear of the year 2020 is,
Substitute
Nuclear of the year 2030 is,
Substitute
For Renewable/Others:
All the following calculations of conversion are in Billions.
Renewable of the year 1980 is,
Substitute
Renewable of the year 1990 is,
Substitute
Renewable of the year 2000 is,
Substitute
Renewable of the year 2005 is,
Substitute
Renewable of the year 2010 is,
Substitute
Renewable of the year 2020 is,
Substitute
Renewable of the year 2030 is,
Substitute
Therefore, the conversion from the Billions of kilowatt-hours to Billions of Btu is tabulated in Table 1 as below,
Table 1
Year | Coal | Petroleum | Natural Gas | Nuclear | Renewable/Other |
1980 | 3964364.644 | 839568.365 | 1181702.929 | 857047.498 | 971629.780 |
1990 | 5440295.783 | 432152.749 | 1272232.717 | 1968805.908 | 1219239.346 |
2000 | 6710783.794 | 379592.824 | 2051319.335 | 2573006.312 | 1216647.203 |
2005 | 6965554.432 | 393945.686 | 2565927.833 | 2641878.821 | 1282816.647 |
2010 | 7568426.513 | 357740.324 | 2641028.311 | 2760043.005 | 1623692.512 |
2020 | 8548734.427 | 364094.232 | 3763682.596 | 2971657.446 | 1758194.194 |
2030 | 11538105.135 | 391378.116 | 3388286.347 | 2971291.918 | 1908300.270 |
Conclusion:
Hence, the conversion for the energy sources from billions kilowatt-hours to billion Btu has been explained.
Want to see more full solutions like this?
Chapter 13 Solutions
EBK ENGINEERING FUNDAMENTALS: AN INTROD
- Q2. For the beams shown below: i. ii. iii. iv. Sketch the deflected shape Determine the reactions at the supports Calculate and sketch the distribution of the shear force and the bending moment Locate the max moment and POC locations (Note: all dimensions are in meters) 15kN/m 6kN/m 30 kN 30 Σ A B Pin C D 5.0 1.0 2.0 3.0arrow_forwardUse Burdine's (1953) equation from the handout (the statistical capillary tube model equation with the values of b, r, and m assumed by Burdine) to mathematically derive a relationship for the hydraulic conductivity function that is based on the SWRC model of Brooks and Corey (1964).arrow_forwardQuestion 2 A sluice gate controls flow in open channels. At sections 1 and 2, the flow is uniform and the pressure is hydrostatic. Neglecting bottom friction and atmospheric pressure, calculate the velocities V1 and V2, and the horizontal force, F, required to hold the gate if h1 = 6m, h2 = 1m, and b = 5m. h₁V₁ Sluice gate, width b Farrow_forward
- Question 1 A pipeline 30 m long connects two tanks which have a difference of water level of 12 m. The first 10 m of pipeline from the upper tank is of 40 mm diameter and the next 20 m is of 60 mm diameter. At the change of section, a valve is fitted. Calculate the rate of flow when the valve is fully opened assuming that its resistance is negligible and that f for both pipes is 0.0054. In order to restrict the flow the valve is then partially closed. If k for the valve is now 5.6, find the percentage reduction in flow. Note the following Reservoir I Segment of Length Pipeline B Diameter (m) (mm) ABC AB 10 40 BC 20 60 Head loss due to friction h₁ = KQ² Valve fl K = 3.028D' Where, •h₂ = k Head loss due to partial closure (VAB-VBC) 2g Reservoir 2 H-12 marrow_forwardCivil engineering students performed an evaluation of the two primary methods of classification (supervised and unsupervised). The evaluation of the two methods utilized the error matrices. Tables 1 and 2 represent supervised and unsupervised methods respectively. Reference Data Bare Agriculture Buildings Forest land Agriculture 130 8 44 48 Classified Data Buildings 12 162 10 16 Forest 0 22 170 38 Bare land 8 14 6 180 Table 1 Results of supervised classification 252 + Reference Data Bare Agriculture Buildings Forest land Agriculture 60 16 44 48 Classified Data Buildings 13 80 22 16 Forest 2 35 120 38 Bare land 8 14 6 180 Table 2 Results of unsupervised classification Compare the two methods based on the following parameters: a. User accuracy b. Producer accuracy c. Overall accuracy. d. Explain the above parameters (a, b & c) e. Which one of the two methods has higher accuracy? Justify your answerarrow_forwardThe following figure shows the cross-section of an anchored sheet pile wall. The soil properties and some wall dimensions are shown in the figure and spacing between anchor rods is 2.0 m (center to center). Design the wall using Rankine theory; i.e., calculate the depth of embedment of the wall (D), tensile force on each rodarrow_forward
- Q2: A circular concrete culvert of diameter 120 cm carries water of depth 75 cm to irrigate a 30-hectare field. What could be the discharge of this canal if the slope was 0.002? Use Manning's n= 0.014. TWOarrow_forwardA farm of 40 hectares is supplied by open field drains. The spacing of these drains were selected to be 100m and the length of each drain is 600 m. If the drainage coefficient is 4 cm/day, find: 1- Discharge at the end of a field drain. 2- Total discharge passed through the collector drain. 3- The dimension of open drains, if n= 0.03, S= 0.00035 and Z= 1.5arrow_forwardPlease use stiffness matrix method to solve.arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning

