Concept explainers
Convert the given sources data in the Table accompanied for the problems 13.14 to 13.20 in the textbook from Billions of kilowatt-hours to Billions of Btu.

Answer to Problem 16P
The given sources data in the Table accompanied for the problems 13.14 to 13.20 in the textbook from Billions of kilowatt-hours to Billions of Btu are tabulated in Table 1.
Explanation of Solution
Given data:
Refer to the problem 13.16 in textbook for the accompanying table.
Formula used:
The value of the
Convert 1 hr into seconds,
Rearrange the equation,
Calculation:
Substitute equation (2) in equation (1),
Rearrange the equation for the relation between kWhr to Btu.
For coal:
All the following calculations of conversion are in Billions.
Coal for the year 1980 is,
Substitute
Coal for the year 1990 is,
Substitute
Coal for the year 2000 is,
Substitute
Coal for the year 2005 is,
Substitute
Coal for the year 2010 is,
Substitute
Coal for the year 2020 is,
Substitute
The coal for the year 2030 is,
Substitute
For petroleum:
All the following calculations of conversion are in Billions.
Petroleum for the year 1980 is,
Substitute
Petroleum for the year 1990 is,
Substitute
Petroleum for the year 2000 is,
Substitute
Petroleum for the year 2005 is,
Substitute
Petroleum for the year 2010 is,
Substitute
Petroleum for the year 2020 is,
Substitute
Petroleum for the year 2030 is,
Substitute
For Natural gas:
All the following calculations of conversion are in Billions.
Natural gas for the year 1980 is,
Substitute
Natural gas for the year 1990 is,
Substitute
Natural gas for the year 2000 is,
Substitute
Natural gas for the year 2000 is,
Substitute
Natural gas for the year 2010 is,
Substitute
Natural gas for the year 2020 is,
Substitute
Natural gas for the year 2030 is,
Substitute
For Nuclear:
All the following calculations of conversion are in Billions.
Nuclear of the year 1980 is,
Substitute
Nuclear of the year 1990 is,
Substitute
Nuclear of the year 2000 is,
Substitute
Nuclear of the year 2005 is,
Substitute
Nuclear of the year 2010 is,
Substitute
Nuclear of the year 2020 is,
Substitute
Nuclear of the year 2030 is,
Substitute
For Renewable/Others:
All the following calculations of conversion are in Billions.
Renewable of the year 1980 is,
Substitute
Renewable of the year 1990 is,
Substitute
Renewable of the year 2000 is,
Substitute
Renewable of the year 2005 is,
Substitute
Renewable of the year 2010 is,
Substitute
Renewable of the year 2020 is,
Substitute
Renewable of the year 2030 is,
Substitute
Therefore, the conversion from the Billions of kilowatt-hours to Billions of Btu is tabulated in Table 1 as below,
Table 1
Year | Coal | Petroleum | Natural Gas | Nuclear | Renewable/Other |
1980 | 3964364.644 | 839568.365 | 1181702.929 | 857047.498 | 971629.780 |
1990 | 5440295.783 | 432152.749 | 1272232.717 | 1968805.908 | 1219239.346 |
2000 | 6710783.794 | 379592.824 | 2051319.335 | 2573006.312 | 1216647.203 |
2005 | 6965554.432 | 393945.686 | 2565927.833 | 2641878.821 | 1282816.647 |
2010 | 7568426.513 | 357740.324 | 2641028.311 | 2760043.005 | 1623692.512 |
2020 | 8548734.427 | 364094.232 | 3763682.596 | 2971657.446 | 1758194.194 |
2030 | 11538105.135 | 391378.116 | 3388286.347 | 2971291.918 | 1908300.270 |
Conclusion:
Hence, the conversion for the energy sources from billions kilowatt-hours to billion Btu has been explained.
Want to see more full solutions like this?
Chapter 13 Solutions
Engineering Fundamentals: An Introduction to Engineering
- Convert the Followingarrow_forwardSolve for the following right triangle for missing parts: - Angle A - Angle B - Side a - Areaarrow_forwardYOUR TOP STADIA CROSSHAIR IN YOUR LEVEL YEILDS A Roo READING of 7.32 FT. YOUR BOTTOM STADIA CROSSHAIR READS 6.23 FT. How FAR AWAY FROM YOUR INSTRUMENT (LEVEL) IS YOUR STATION WHERE YOUR PHilly Roo IS LOCATED:arrow_forward
- SITUATION. A uniform live load of 16 kN/m and a single concentrated live force of 34 kN are placed on the top beams. If the beams also support a uniform dead load of 3 kN/m, determinearrow_forwardComplete the profile leveling notes in Table 1. Show the arithmetic check and sample calculations of your work. Draw a neat sideview sketch showing the location of all stations and indicate on the sketch all of the numbers in your completed table.arrow_forward3. A level loop was run starting at BM 20 and going clockwise around the loop shown below in Figure 2. The given known elevation of BM 20 is 1418.013 ft. When closing the level loop, BM 20 was found to have an elevation of 1417.890 ft. (a) Adjust the elevation of each station to correct for error. Show sample calculations of your work. (b) What is the accuracy ratio of the survey? BM 20 Elev. 1418.013 2.3 mi BM 20A Observed Elev. 1234.567 2.7 mi 1.6 mil 0.9 mi BM 20B Observed Elev. 1357.913 BM 20C Observed Elev. 1396.963arrow_forward
- A W14 x 82 with 20 ft length column is part of a braced frame. The load and moments computed from service loads, and bending is about the x axis are (axial compressive dead load of 63 k; axial compressive live load of 76 k; upper dead moment of 32 ft-k; upper live moment of 56 ft-k; lower dead moment of 65 ft-k; lower live moment of 95 ft-k; the moments cause the member to bend in double curvature). Determine the lateral-torsional buckling modification factor C₁. ial live load ofarrow_forwardPROBLEM 1 Find the reaction at A and F. Compute for the force in members AB, BD, and DF. Use Method of Joints OR Method of Sections OR both. 3m B D C E 3m 100KN 3m 4marrow_forwardI need detailed help solving this exercise from homework of Engineering Mathematics II.I do not really understand how to do, please do it step by step, not that long but clear. Thank you!P.S.: Please do not use AI, thanks!arrow_forward
- Engineering Fundamentals: An Introduction to Engi...Civil EngineeringISBN:9781305084766Author:Saeed MoaveniPublisher:Cengage Learning

