The Basic Practice of Statistics
The Basic Practice of Statistics
8th Edition
ISBN: 9781319042578
Author: David S. Moore, William I. Notz, Michael A. Fligner
Publisher: W. H. Freeman
bartleby

Concept explainers

bartleby

Videos

Question
Book Icon
Chapter 13, Problem 13.48E

(a)

To determine

To find: The probability of rolling doubles on a single toss of the dice.

(a)

Expert Solution
Check Mark

Answer to Problem 13.48E

The probability of rolling doubles on a single toss of the dice is 0.167.

Explanation of Solution

Given info:

A rolling pair of balanced dice in a board game is given and the rolls are independent of each other.

Calculation:

Two dice are rolled the sample space S is given as follows:

S={(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6)}

The probability of rolling doubles on a single toss of the dice is obtained below:

The possible outcomes to get doublets are {(1,1),(2,2),(3,3),(4,4),(5,5),(6,6)}

The number of double outcomes in a pair of dice is 6 and the total number of outcomes is 36.

The required probability is as follows:

P(Rollingdoublesin asingledice)=Number of favorable casesTotal number of cases=636=16=0.167

Thus, the probability of rolling doubles on a single toss of the dice is 0.167.

(b)

To determine

To find: The probability of getting no doubles on the first toss, but doubles on the second toss.

(b)

Expert Solution
Check Mark

Answer to Problem 13.48E

The probability of getting no doubles on the first toss, but doubles on the second toss is0.139.

Explanation of Solution

Calculation:

From part (a), the probability of rolling doubles on a single toss of the dice is 0.167.

Hence, the probability of not rolling doubles on a single toss of the dice is 0.833(=10.167) 0.167.

Also, each toss is independent of the other.

The required probability is,

P(Nodoubles on the first toss and roll doubles on the second toss)=[P(Nodoubles on the first toss)P(Roll doubles on the second toss)]=0.833×0.167=0.139

Thus, the probability of getting no doubles on the first toss, but doubles on the second toss is0.139.

(c)

To determine

To find: The probability of getting no doubles in first two tosses and getting doubles in the third toss.

(c)

Expert Solution
Check Mark

Answer to Problem 13.48E

The probability of getting no doubles in first two tosses and getting doubles in the third toss is 0.1159.

Explanation of Solution

Calculation:

The required probability is,

P(Nodoubles on the first and second toss, and roll doubles on the third toss)=[P(Nodoubles on the first toss)P(Nodoubles on the second toss)P(Roll doubles on the third toss)]=0.833×0.833×0.167=0.1159

Thus, the probability of getting no doubles in first two tosses and getting doubles in the third toss is 0.1159.

(d)

To determine

To find: The probability that first doubles occurs on the fourth toss and on the fifth toss and also give the general result that the first doubles occurs on the kth toss.

(d)

Expert Solution
Check Mark

Answer to Problem 13.48E

The probability that first doubles occurs on the fourth toss is 0.0965.

The probability that first doubles occurs on the fourth toss is 0.0804.

The probability that first doubles occurs on the kth toss is (0.833)k1(0.167) .

Explanation of Solution

Given info:

Calculation:

The probability that first doubles occurs on the fourth toss is obtained below:

P(Doubles on the fourth toss)=[P(Nodoubles on the first toss)P(Nodoubles on the second toss)P(Nodoubles on the third toss)P(Doubles on the fourth toss)]=0.833×0.833×0.833×0.167=0.0965

Thus, the probability that first doubles occurs on the fourth toss is 0.0965.

The probability that first doubles occurs on the fifth toss is obtained below:

P(Doubles on the fifth toss)=[P(Nodoubles on the first toss)P(Nodoubles on the second toss)P(Nodoubles on the third toss)P(Nodoubles on the fourth toss)P(Doubles on the fifth toss)]=0.833×0.833×0.833×0.833×0.167=0.0804

Thus, the probability that first doubles occurs on the fourth toss is 0.0804.

The probability that first doubles occurs on the kth toss is obtained below:

P(Doubles on the kth toss)=[P(Nodoubles on the first toss)P(Nodoubles on the second toss)P(Nodoubles on the third toss)P(Nodoubles on the fourth toss)...P(Doubles on the kth toss)]=0.833×0.833×0.833×0.833(k1)times×0.167=(0.833)k1(0.167)

(e)

To determine

To find: The probability to get to go again within three turns.

(e)

Expert Solution
Check Mark

Answer to Problem 13.48E

The probability to get to go again within three turns is 0.4219.

Explanation of Solution

Calculation:

The probability that you get to go again within three turns is obtained below:

The required probability is as follows:

P(Go again within three turns)=0.167+0.139+0.1159

Thus, the probability to get to go again within three turns is 0.4219.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Morningstar tracks the total return for a large number of mutual funds. The following table shows the total return and the number of funds for four categories of mutual funds. Click on the datafile logo to reference the data. DATA file Type of Fund Domestic Equity Number of Funds Total Return (%) 9191 4.65 International Equity 2621 18.15 Hybrid 1419 2900 11.36 6.75 Specialty Stock a. Using the number of funds as weights, compute the weighted average total return for these mutual funds. (to 2 decimals) % b. Is there any difficulty associated with using the "number of funds" as the weights in computing the weighted average total return in part (a)? Discuss. What else might be used for weights? The input in the box below will not be graded, but may be reviewed and considered by your instructor. c. Suppose you invested $10,000 in this group of mutual funds and diversified the investment by placing $2000 in Domestic Equity funds, $4000 in International Equity funds, $3000 in Specialty Stock…
The days to maturity for a sample of five money market funds are shown here. The dollar amounts invested in the funds are provided. Days to Maturity 20 Dollar Value ($ millions) 20 12 30 7 10 5 6 15 10 Use the weighted mean to determine the mean number of days to maturity for dollars invested in these five money market funds (to 1 decimal). days
c. What are the first and third quartiles? First Quartiles (to 1 decimals) Third Quartiles (to 4 decimals) × ☑ Which companies spend the most money on advertising? Business Insider maintains a list of the top-spending companies. In 2014, Procter & Gamble spent more than any other company, a whopping $5 billion. In second place was Comcast, which spent $3.08 billion (Business Insider website, December 2014). The top 12 companies and the amount each spent on advertising in billions of dollars are as follows. Click on the datafile logo to reference the data. DATA file Company Procter & Gamble Comcast Advertising ($billions) $5.00 3.08 2.91 Company American Express General Motors Advertising ($billions) $2.19 2.15 ETET AT&T Ford Verizon L'Oreal 2.56 2.44 2.34 Toyota Fiat Chrysler Walt Disney Company J.P Morgan a. What is the mean amount spent on advertising? (to 2 decimals) 2.55 b. What is the median amount spent on advertising? (to 3 decimals) 2.09 1.97 1.96 1.88
Knowledge Booster
Background pattern image
Statistics
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, statistics and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
MATLAB: An Introduction with Applications
Statistics
ISBN:9781119256830
Author:Amos Gilat
Publisher:John Wiley & Sons Inc
Text book image
Probability and Statistics for Engineering and th...
Statistics
ISBN:9781305251809
Author:Jay L. Devore
Publisher:Cengage Learning
Text book image
Statistics for The Behavioral Sciences (MindTap C...
Statistics
ISBN:9781305504912
Author:Frederick J Gravetter, Larry B. Wallnau
Publisher:Cengage Learning
Text book image
Elementary Statistics: Picturing the World (7th E...
Statistics
ISBN:9780134683416
Author:Ron Larson, Betsy Farber
Publisher:PEARSON
Text book image
The Basic Practice of Statistics
Statistics
ISBN:9781319042578
Author:David S. Moore, William I. Notz, Michael A. Fligner
Publisher:W. H. Freeman
Text book image
Introduction to the Practice of Statistics
Statistics
ISBN:9781319013387
Author:David S. Moore, George P. McCabe, Bruce A. Craig
Publisher:W. H. Freeman
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License