
The rate constant for the second-order reaction
is 0.80/M · s at 10°C. (a) Starting with a concentration of 0.086 M, calculate the concentration of NOBr after 22 s. (b) Calculate the half-lives when [NOBr]0 = 0.072 M and [NOBr]0 = 0.054 M.
(a)

Interpretation:
The concentration of
Concept introduction:
Rate equation for the general reaction
The rate of the reaction is proportinal to the concentration of A to the power of x, is
The rate of the reaction is proportional to the concentration of B to the power of y is
Then the rate equation becomes,
Order of this reaction is the sum of the powers to which all reactant concentrations appearing in the rate law are raised.
Answer to Problem 13.27QP
The concentration of
Explanation of Solution
The given reaction is
The reaction follows second order kinetics.
Rate constant of the given reaction is
The concentration of
For a second order reaction the relationship between concentrations of reactant and time is,
Therefore, the concentration of
(b)

Interpretation:
The half-life when
Concept introduction:
Rate equation for the general reaction
The rate of the reaction is proportinal to the concentration of A to the power of x, is
The rate of the reaction is proportional to the concentration of B to the power of y is
Then the rate equation becomes,
Order of this reaction is the sum of the powers to which all reactant concentrations appearing in the rate law are raised.
Half-life is the time required for one half of a reactant to react.
Half-life for a second order reaction is
Answer to Problem 13.27QP
The half-life when
Explanation of Solution
The given reaction is
The reaction follows second order kinetics.
Rate constant of the given reaction is
The concentration of
We know that for a second order half-life reaction and half-life of a second order reaction is dependent on initial concentration
The half-life when
Want to see more full solutions like this?
Chapter 13 Solutions
Chemistry
- Please draw a mechanism don't write sentarrow_forwardFrom this COZY spectrum, how do you know which protons are next to each other?arrow_forward5. A buffer consists of 0.45 M NH, and 0.25 M NH-CI (PK of NH 474) Calculate the pH of the butter. Ans: 9.52 BAS PH-9.26 +10g (10.95)) 14-4.59 PH=4.52 6. To 500 ml of the buffer on #5 a 0.20 g of sample of NaOH was added a Write the net ionic equation for the reaction which occurs b. Should the pH of the solution increase or decrease sightly? Calculate the pH of the buffer after the addition Ans: 9.54arrow_forward
- Explain the inductive effect (+I and -I) in benzene derivatives.arrow_forwardThe inductive effect (+I and -I) in benzene derivatives, does it guide ortho, meta or para?arrow_forward19.57 Using one of the reactions in this chapter, give the correct starting material (A-L) needed to produce each structure (a-f). Name the type of reaction used. (b) ہ مرد (d) HO (c) དང་ ་་ཡིན་ད་དང་ (f) HO Br B D of oli H J Br K C 人 ↑arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- General Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage Learning





