The moment about point A.
The moment about point B.
The moment about point C.

Answer to Problem 13.1P
The moment about point A is
The moment about point B in member BA is
The moment about point B in member BC is
The moment about point C is
Explanation of Solution
Given:
The supports
The girder has thickness of
Concept Used:
Write the expression for fixed end moments.
Here, uniform distributed load is
Write the expression for absolute stiffness factor for member
Here, stiffness factor for member
Write the expression for absolute stiffness factor for member
Here, stiffness factor for member
Write the expression for distribution factor for member
Write the expression for distribution factor for member
Write the expression for distribution factor for member
Since the supports
Write the expression for distribution factor for member
Since the supports
Calculation:
The diagram of the beam is shown below.
Figure (1)
Consider Figure (1).
Length of span is
Length of haunch at end
Length of haunch at end
Calculate ratio of length of haunch at end
Calculate ratio of length of haunch at end
Calculate ratio for rectangular cross-sectional area at end
Calculate ratio for rectangular cross-sectional area at end
Calculate ratio of length of haunch at end
Calculate ratio of length of haunch at end
Calculate ratio for rectangular cross-sectional area at end
Calculate ratio for rectangular cross-sectional area at end
Determine the carry over factor of member
Determine carry over factor of member
Determine carry over factor of member
Determine carry over factor of member
Determine stiffness factor of member
Determine stiffness factor of member
Determine stiffness factor of member
Determine stiffness factor of member
Calculate absolute stiffness factor for member
Substitute
Calculate absolute stiffness factor for member
Substitute
Calculate fixed end moment for member
Determine coefficients from straight haunches-constant width table.
Substitute
Calculate fixed end moment for member
Determine coefficients from straight haunches-constant width table.
Substitute
Calculate fixed end moment for member
Determine coefficients from straight haunches-constant width table.
Substitute
Calculate fixed end moment for member
Determine coefficients from straight haunches-constant width table.
Substitute
Calculate distribution factor for member
Substitute
Calculate distribution factor for member
Substitute
The moment distribution table is shown below.
Joint | A | B | C | |
Member | AB | BA | BC | CB |
K | | | ||
D.F. | | | | |
C.O.F. | | | | |
F.E.M. | ||||
DIST | | | ||
SUM |
Table (1)
Conclusion:
The moment about point A is
The moment about point B in member BA is
The moment about point B in member BC is
The moment about point C is
Want to see more full solutions like this?
- A project requires 125 cubic yards of concrete sidewalk to be placed, for which 165 workhours have been budgeted. The latest weekly progress report shows that 78 cubic yards have been placed and 103 workhours have been expended to date. What is the status of the concrete placement? Significantly under budget. On budget. Significantly over budget. Status cannot be determined with information supplied.arrow_forwardRefer to exhibit #098. At what depth was water encountered?arrow_forwardWhat is the reaction moment at A for the frame shown? a. 222.1 k-ft b. 107.8 k-ft c. 20.8 k-ft d. 23.25 k-ftarrow_forward
- “When a conflict exists between the project floor plans and detailed material schedule relative to size or number, which of the following usually governs in typical order of precedence?arrow_forwardWhat are the critical activitiesarrow_forwardApproximately how many pounds of water are necessary to hydrate 100 pounds of type I Portland cement? 30 50 75 94arrow_forward
- 7:05 3.1 Trabajo en clase.pptx .III LTE 8 Trabajo en clases 3.1 C9 X 20 W8 X 21 5-15. PL¹× 12 Fy = 50 klb/plg² KL = 16 pies KL 21 pies 2 plg MC 13 × 50 PL × 12 Fy = 42 klb/plg2 Fy = 36 klb/plg² 8 plg K k MC8 × 21.4 KL = 20 piesarrow_forwardThe steel frameword below is used to support the reinforced concrete slab used for an office area above the first storey. The slab is 210 mm thick. Sketch the loading that acts along members BE and FED. Use a = 2.15 m and b = 5.25 m. Refer to the 2024 OBC live load table. The unit weight for the concrete is 24.15 kN/m3.find:Loading for member BE Loading for member FED Live and Dead Loadsarrow_forwardFor the simply supported beam below, draw both the shear force (VFD) and ending moment (BDM) diagrams. Please show all equations and free body diagrams (FBD). Note: I want a cut through each of the three sections of the beam, with all related forces calculated and shown on the VFD and BMD.Reaction Forces Shear Force DiagramMaximum Shear ForceEquation for cut 1, 2, 3 respectively.Confirmation of Reaction ForcesBending Moment DiagramMaximum Bending Momentarrow_forward
- For the structural frame below, draw the shear force (VFD) and bending moment (BMD) diagrams for each of the three members of the frame. The frame is pin connected at A, C and D and fixed at joint B.Find:VFD & BMD for segment AB VFD & BMD for segment BCVFD & BMD for segment CD Reaction Forces VFD Equations BMD EquationsFree Body Diagramsarrow_forwardDetermine the horizontal and vertical reactions at A and C for the two member frame below. Use P1 = 3.2 kN, P2 = 14.5 kN/m, L1 = 3.3 m, and L2 = 2.3 m. Free Body DiagramsTriangular Load Use of Pin Reaction Forcesarrow_forwardDetermine the reaction forces at supports A and C for the compound beam. Assume C is fixed, B is a pin, and A is a roller. Use P1 = 16 kN/m, P2 = 21 kN, L1 = 3.5 m, L2 = 1.5 m, and L3 – 1.5 m. needs:Triangular Load Use of Pin Reaction Forcesfree body diagramsarrow_forward
- Structural Analysis (10th Edition)Civil EngineeringISBN:9780134610672Author:Russell C. HibbelerPublisher:PEARSONPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Fundamentals of Structural AnalysisCivil EngineeringISBN:9780073398006Author:Kenneth M. Leet Emeritus, Chia-Ming Uang, Joel LanningPublisher:McGraw-Hill EducationTraffic and Highway EngineeringCivil EngineeringISBN:9781305156241Author:Garber, Nicholas J.Publisher:Cengage Learning





