Concept explainers
Find the percentage of load carried by the shaft.
Answer to Problem 13.1P
The percentage of load carried by the shaft is
Explanation of Solution
Given information:
The diameter of the base
The total length (L) is 27.0 ft.
Unit weight of loose sand
Unit weight of dense sand
The diameter of the shaft
The length of the shaft
The value of factor of safety (FOS) is 4.
Consider
Calculation:
Find the area of the base
Substitute
From given Figure, find the effective stress of soil.
Find the ratio
Substitute 27 ft for
Refer Table 13.3. “Berezantzev et al.’s value of
The value of
Find the bearing capacity factor
Substitute
Find the net ultimate load carrying capacity at the base
Substitute
Find the shaft load
Find the perimeter of the shaft
Substitute 2.5 ft for
Find the value of
Substitute
Find the value of
Substitute
Find the critical depth
Substitute 2.5 ft for
The value of critical depth 37.5 ft is more than the length
Find the frictional resistance
At depth
At depth
Substitute 0.485 for K,
Find the load carrying capacity of the shaft
Find the ultimate load
Substitute
Find the allowable load
Substitute
Find the percentage of load carried by the shaft:
Substitute
Therefore, the percentage of load carried by the shaft is
Want to see more full solutions like this?
Chapter 13 Solutions
Principles of Foundation Engineering
- $$ 5.1 Assume that you are observing traffic in a single lane of a highway at a specific location. You measure the average headway and average spacing of passing vehicles as 3.2 seconds and 165 ft, respectively. Calculate the flow, average speed, and density of the traffic stream in this lane. 5.2 Assume that you are an observer standing at a point along a three-lane roadway. All vehicles in lane 1 are traveling at 30 mi/h, all vehicles in lane 2 are traveling at 45 mi/h, and all vehicles in lane 3 are traveling at 60 mi/h. There is also a constant spacing of 0.5 mile between vehicles. If you collect spot speed data for all vehicles as they cross your observation point, for 30 minutes, what will be the time-mean speed and space-mean speed for this traffic stream?arrow_forwardDetermine the direction of F2 such that the resultant force of adding F1 and F2 acts along the positive yaxis.arrow_forward3 decimal places answer don't use aiarrow_forward
- 4.5 in 2.5 in. D B1 0 140 lb 5 in. 40° 20 lb Replace the forces acting at A and D with an equivalent force-couple system acting at point B. Force B = acting at a angle measured from the Submit part Couple M= in the direction. answered Submit partarrow_forward4.5 in. 2.5 in. 140 lb B Only handwritten 5 in. 40° 120 lb Replace the forces acting at A and D with an equivalent force-couple system acting at point B. Force B = acting at a angle measured from the Submit part Couple M= in the direction. Unansweredarrow_forward1.) Calculate the internal forces and moments (shear force, bending moment, and axial force if applicable) at point C on the beam shown below. Clearly show all your steps, including the calculation of support reactions, and the determination of internal loadings at point C. (Ans: Nc = 0 kN, Vc = -6.53 kN, Mc = 71.68 kN.m) 40 pts. 7.5 kN A H 6.0 kN/m 4.0 kN 4.0 C B 2.0 3.0 7.0 1.5 2.0arrow_forward
- Please solve using cartesian coordinates. Be clear about why cos or sin is used (explain the trig). Make sure to account for the normal force.arrow_forwardSolve /Draw the shear force and bending moment for these Don't use Artificial intelligencearrow_forwardA For the gravity concrete dam shown in the figure, the following data are available: -The factor of safety against sliding (F.S sliding) =1.2 - Unit weight of concrete (Yeone) 24 KN/m³ - Neglect( Wave pressure, silt pressure, ice force and earth quake force) H=0.65, (Ywater)= 9.81 KN/m³ Find factor of safety against overturning (F.S overturning) 10m 5m 6m 80marrow_forward
- Draw the shear force and bending moment diagramarrow_forwardThe pin-connected structure consists of a rigid beam ABCD and two supporting bars. Bar (1) is an aluminum alloy [E = 75 GPa] with a cross-sectional area of A₁ = 850 mm². Bar (2) is a bronze alloy [E = 109 GPa] with a cross-sectional area of A₂ = 410 mm². Assume L₁=2.6 m, L₂-3.3 m, a=0.7 m, b=1.5 m, and c=0.8 m. All bars are unstressed before the load P is applied; however, there is a 4.5-mm clearance in the pin connection at A. If a load of P = 45 kN is applied at B, determine: (a) the normal stresses σ1,02, in both bars (1) and (2). (b) the normal strains €1, €2, in bars (1) and (2). (c) determine the downward deflection VA of point A on the rigid bar. (1) Answers: a (a) σ1 = (b) E₁ = (C) VA = i i i ล B C L2 b C MPa, σ = i με, Ε2 i mm. MPa. μεarrow_forwardThe pin-connected structure consists of a rigid beam ABCD and two supporting bars. Bar (1) is an aluminum alloy [E = 79 GPa] with a cross-sectional area of A₁ = 780 mm². Bar (2) is a bronze alloy [E = 104 GPa] with a cross-sectional area of A₂ = 460 mm². Assume L₁=1.6 m, L₂-2.1 m, a=0.6 m, b=1.8 m, and c-1.3 m. All bars are unstressed before the load P is applied; however, there is a 4-mm clearance in the pin connection at A. If a load of P = 58 kN is applied at B, determine: (a) the normal stresses 01,02, in both bars (1) and (2). (b) the normal strains €1,2, in bars (1) and (2). (c) determine the downward deflection VA of point A on the rigid bar. (1) L₁ B Answers: (a)σ = b ล L2 C D i MPa, σ1 = i MPa. με, Ε2 = i με. (b) €1 = i (C) VA = i mm.arrow_forward
- Principles of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781337705028Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage LearningPrinciples of Foundation Engineering (MindTap Cou...Civil EngineeringISBN:9781305081550Author:Braja M. DasPublisher:Cengage LearningFundamentals of Geotechnical Engineering (MindTap...Civil EngineeringISBN:9781305635180Author:Braja M. Das, Nagaratnam SivakuganPublisher:Cengage Learning
- Principles of Geotechnical Engineering (MindTap C...Civil EngineeringISBN:9781305970939Author:Braja M. Das, Khaled SobhanPublisher:Cengage Learning