Concept explainers
Note: The purpose of the following problem is to provide an exercise in carrying out a unit process for the method of characteristics. A more extensive application to a complete flow field is left to your specific desires. Also, an extensive practical problem utilizing the finite-difference method requires a large number of arithmetic operations and is practical only on a digital computer. You are encouraged to set up such a problem at your leisure. The main purpose of the present chapter is to present the essence of several numerical methods, not to burden the reader with a lot of calculations or the requirement to write an extensive computer program.
Consider two points in a supersonic flow. These points are located in a cartesian coordinate system at

The numerical value of
The numerical value of
The numerical value of
The numerical value of
The location of point 3.
Answer to Problem 13.1P
The value of
The value of
The value of
The value of
The location of point 3 is
Explanation of Solution
Given:
The Cartesian coordinate system at
The Cartesian coordinate system at
The numerical value of
The numerical value of
The numerical value of
The numerical value of
The numerical value of
The numerical value of
The numerical value of
The numerical value of
Formula used:
The expression for the Mach number is given as,
Here,
The expression for speed of object is given as,
The expression for speed of sound is given as,
The expression for angle of object is given as,
Calculation:
The speed of sound at point 1 can be calculated,
The speed of object at point 1 can be calculated as,
The Mach number at point 1 can be calculated as,
The angle of object at point 1 can be calculated as,
The constant at point 1 can be calculated as,
The flow constant at point 1 can be calculated as,
The speed of sound at point 2 can be calculated as,
The speed of object at point 2 can be calculated as,
The Mach number at point 2 can be calculated as,
The angle of object at point 2 can be calculated as,
The constant at point 2 can be calculated as,
The flow constant at point 2 can be calculated as,
The angle of object at point 3 can be calculated as given bellow,
The constant at point 3 can be calculated as,
The Mach number at point 3 can be calculated as,
To obtain the other flow variables at point 3, expression is given as,
The pressure at point 2 can be calculated as,
The temperature at point 3 is given as below,
Expression for the temperature,
The speed of sound at point 3 can be calculated as,
The speed of object at point 3 can be calculated as,
The initial velocity of object at point 3 can be calculated as,
The final velocity of object at point 3 can be calculated as,
To locate point 3 expression is,
The average angle at point 2 and 3 along the
The average angle at point 2 and 3 along the
The final angle at point 2 and 3 is given as,
The equation for the point on they-axis is given as,
The average angle at point 1 and 3 along the
The average angle at point 1 and 3 along the
The final angle at point 1 and 3 is given as below,
The equation for the point on the x-axis is given as below,
On solving equation (1) and (2), we will get the point 3 as,
Thus,
Conclusion:
Therefore, the value of
Therefore, the value of
Therefore, the value of
Therefore, the value of
Therefore, the location of point 3 is
Want to see more full solutions like this?
Chapter 13 Solutions
FUND OF AERODYNAMICS(LLF) +CONNECT (1YR)
- Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.arrow_forwardAn aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.arrow_forwardProblem 1 (65 pts, suggested time 50 mins). An elastic string of constant line tension1T is pinned at x = 0 and x = L. A constant distributed vertical force per unit length p(with units N/m) is applied to the string. Under this force, the string deflects by an amountv(x) from its undeformed (horizontal) state, as shown in the figure below.The PDE describing mechanical equilibrium for the string isddx Tdvdx− p = 0 . (1)(a) [5pts] Identify the BCs for the string and identify their type (essential/natural). Writedown the strong-form BVP for the string, including PDE and BCs.(b) [10pts] Find the analytical solution of the BVP in (a). Compute the exact deflectionof the midpoint v(L/2).(c) [15pts] Derive the weak-form BVP.(d) [5pts] What is the minimum number of linear elements necessary to compute the deflection of the midpoint?(e) [15pts] Write down the element stiffness matrix and the element force vector for eachelement.arrow_forward
- Problem 1 (35 pts). An elastic string of constant line tension1 T is pinned at x = 0 andx = L. A constant distributed vertical force per unit length p (with units N/m) is appliedto the string. Under this force, the string deflects by an amount v(x) from its undeformed(horizontal) state, as shown in the figure below.Force equilibrium in the string requires thatdfdx − p = 0 , (1)where f(x) is the internal vertical force in the string, which is given byf = Tdvdx . (2)(a) [10pts] Write down the BVP (strong form) that the string deflection v(x) must satisfy.(b) [2pts] What order is the governing PDE in the BVP of (a)?(c) [3pts] Identify the type (essential/natural) of each boundary condition in (a).(d) [20pts] Find the analytical solution of the BVP in (a).arrow_forwardProblem 2 (25 pts, (suggested time 15 mins). An elastic string of line tension T andmass per unit length µ is pinned at x = 0 and x = L. The string is free to vibrate, and itsfirst vibration mode is shown below.In order to find the frequency of the first mode (or fundamental frequency), the string isdiscretized into a certain number of linear elements. The stiffness and mass matrices of thei-th element are, respectivelyESMi =TLi1 −1−1 1 EMMi =Liµ62 11 2 . (2)(a) [5pts] What is the minimum number of linear elements necessary to compute the fundamental frequency of the vibrating string?(b) [20pts] Assemble the global eigenvalue problem and find the fundamental frequency ofvibration of the stringarrow_forwardI need part all parts please in detail (including f)arrow_forward
- Problem 3 (10 pts, suggested time 5 mins). In class we considered the mutiphysics problem of thermal stresses in a rod. When using linear shape functions, we found that the stress in the rod is affected by unphysical oscillations like in the following plot E*(ux-a*T) 35000 30000 25000 20000 15000 10000 5000 -5000 -10000 0 Line Graph: E*(ux-a*T) MULT 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Arc length (a) [10pts] What is the origin of this issue and how can we fix it?arrow_forwardanswer the questions and explain all of it in words. Ignore where it says screencast and in class explanationarrow_forwardB5 Please help on the attached question.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





