
Concept explainers
Note: The purpose of the following problem is to provide an exercise in carrying out a unit process for the method of characteristics. A more extensive application to a complete flow field is left to your specific desires. Also, an extensive practical problem utilizing the finite-difference method requires a large number of arithmetic operations and is practical only on a digital computer. You are encouraged to set up such a problem at your leisure. The main purpose of the present chapter is to present the essence of several numerical methods, not to burden the reader with a lot of calculations or the requirement to write an extensive computer program.
Consider two points in a supersonic flow. These points are located in a cartesian coordinate system at

The numerical value of
The numerical value of
The numerical value of
The numerical value of
The location of point 3.
Answer to Problem 13.1P
The value of
The value of
The value of
The value of
The location of point 3 is
Explanation of Solution
Given:
The Cartesian coordinate system at
The Cartesian coordinate system at
The numerical value of
The numerical value of
The numerical value of
The numerical value of
The numerical value of
The numerical value of
The numerical value of
The numerical value of
Formula used:
The expression for the Mach number is given as,
Here,
The expression for speed of object is given as,
The expression for speed of sound is given as,
The expression for angle of object is given as,
Calculation:
The speed of sound at point 1 can be calculated,
The speed of object at point 1 can be calculated as,
The Mach number at point 1 can be calculated as,
The angle of object at point 1 can be calculated as,
The constant at point 1 can be calculated as,
The flow constant at point 1 can be calculated as,
The speed of sound at point 2 can be calculated as,
The speed of object at point 2 can be calculated as,
The Mach number at point 2 can be calculated as,
The angle of object at point 2 can be calculated as,
The constant at point 2 can be calculated as,
The flow constant at point 2 can be calculated as,
The angle of object at point 3 can be calculated as given bellow,
The constant at point 3 can be calculated as,
The Mach number at point 3 can be calculated as,
To obtain the other flow variables at point 3, expression is given as,
The pressure at point 2 can be calculated as,
The temperature at point 3 is given as below,
Expression for the temperature,
The speed of sound at point 3 can be calculated as,
The speed of object at point 3 can be calculated as,
The initial velocity of object at point 3 can be calculated as,
The final velocity of object at point 3 can be calculated as,
To locate point 3 expression is,
The average angle at point 2 and 3 along the
The average angle at point 2 and 3 along the
The final angle at point 2 and 3 is given as,
The equation for the point on they-axis is given as,
The average angle at point 1 and 3 along the
The average angle at point 1 and 3 along the
The final angle at point 1 and 3 is given as below,
The equation for the point on the x-axis is given as below,
On solving equation (1) and (2), we will get the point 3 as,
Thus,
Conclusion:
Therefore, the value of
Therefore, the value of
Therefore, the value of
Therefore, the value of
Therefore, the location of point 3 is
Want to see more full solutions like this?
Chapter 13 Solutions
Fundamentals of Aerodynamics
- handwritten-solutions, please!arrow_forwardhandwritten-solutions, please!arrow_forwardRequired information An eccentric force P is applied as shown to a steel bar of 25 × 90-mm cross section. The strains at A and B have been measured and found to be εΑ = +490 μ εB=-70 μ Know that E = 200 GPa. 25 mm 30 mm 90 mm 45 mm B Determine the distance d. The distance dis 15 mm mm.arrow_forward
- handwritten-solutions, please!arrow_forwardhandwritten-solutions, please!arrow_forward! Required information Assume that the couple shown acts in a vertical plane. Take M = 25 kip.in. r = 0.75 in. A B 4.8 in. M 1.2 in. [1.2 in. Determine the stress at point B. The stress at point B is ksi.arrow_forward
- Problem 6 (Optional, extra 6 points) 150 mm 150 mm 120 mm 80 mm 60 mm PROBLEM 18.103 A 2.5 kg homogeneous disk of radius 80 mm rotates with an angular velocity ₁ with respect to arm ABC, which is welded to a shaft DCE rotating as shown at the constant rate w212 rad/s. Friction in the bearing at A causes ₁ to decrease at the rate of 15 rad/s². Determine the dynamic reactions at D and E at a time when ₁ has decreased to 50 rad/s. Answer: 5=-22.01 +26.8} N E=-21.2-5.20Ĵ Narrow_forwardProblem 1. Two uniform rods AB and CE, each of weight 3 lb and length 2 ft, are welded to each other at their midpoints. Knowing that this assembly has an angular velocity of constant magnitude c = 12 rad/s, determine: (1). the magnitude and direction of the angular momentum HD of the assembly about D. (2). the dynamic reactions (ignore mg) at the bearings at A and B. 9 in. 3 in. 03 9 in. 3 in. Answers: HD = 0.162 i +0.184 j slug-ft²/s HG = 2.21 k Ay =-1.1 lb; Az = 0; By = 1.1 lb; B₂ = 0.arrow_forwardProblem 5 (Optional, extra 6 points) A 6-lb homogeneous disk of radius 3 in. spins as shown at the constant rate w₁ = 60 rad/s. The disk is supported by the fork-ended rod AB, which is welded to the vertical shaft CBD. The system is at rest when a couple Mo= (0.25ft-lb)j is applied to the shaft for 2 s and then removed. Determine the dynamic reactions at C and D before and after the couple has been removed at 2 s. 4 in. C B Mo 5 in 4 in. Note: 2 rotating around CD induced by Mo is NOT constant before Mo is removed. and ₂ (two unknowns) are related by the equation: ₂ =0+ w₂t 3 in. Partial Answer (after Mo has been removed): C-7.81+7.43k lb D -7.81 7.43 lbarrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





