
Concept explainers
The data sets in the first three problems are unrealistically small to allow you to practice the computational routines presented in this chapter. Most problems use SPSS.
In problem 12.1, data regarding voter turnout in five cities was presented. For the sake of convenience, the data for three of the variables arc presented again here along with
City | Turnout | Unemployment Rate | % Negative Ads | |
A | 55 | 5 | 60 | |
B | 60 | 8 | 63 | |
C | 65 | 9 | 55 | |
D | 68 | 9 | 53 | |
E | 70 | 10 | 48 | |
|
63.6 | 8.2 | 55.8 | |
|
5.5 | 1.7 | 5.3 | |
Unemployment Rate |
Negative Ads | |||
Turnout | 0.95 |
|
||
Unemployment rate |
|
|||
a. Compute the partial
b. Compute the partial correlation coefficient for the relationship between turnout
c. Find the unstandardized multiple regression equation with unemployment
d. Compute beta-weights for each independent variable. Which has the stronger impact on turnout? (HINT: Use Formulas 13. 7 and 13.8 to calculate the beta-weights.)
e. Compute the coefficient of multiple determination
f. Write a paragraph summarizing your conclusions about the relationships among these three variables.

(a)
To find:
The partial correlation coefficient between turnout and unemployment while controlling for the effect of negative advertising.
Answer to Problem 13.1P
Solution:
The partial correlation coefficient between turnout and unemployment while controlling for the effect of negative advertising is 0.97 and the relationship between turnout and unemployment rate is direct.
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
Formula used:
The formula to calculate the first order partial correlation is given by,
Where,
Calculation:
From the given correlation matrix, the zero order correlations are,
And,
Substitute 0.95 for
Simplify further,
The first order partial correlation
Conclusion:
Therefore, the partial correlation coefficient between turnout and unemployment while controlling for the effect of negative advertising is 0.97 and the relationship between turnout and unemployment rate is direct.

(b)
To find:
The partial correlation coefficient between turnout and negative ads while controlling for the effect of unemployment.
Answer to Problem 13.1P
Solution:
The partial correlation coefficient between turnout and negative ads while controlling for the effect of unemployment is
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
Formula used:
The formula to calculate the first order partial correlation is given by,
Where,
Calculation:
From the given correlation matrix, the zero order correlations are,
And,
Substitute
Simplify further,
The first order partial correlation
Conclusion:
Therefore, the partial correlation coefficient between turnout and negative ads while controlling for the effect of unemployment is

(c)
To find:
The unstandardized multiple regression equation with unemployment
Answer to Problem 13.1P
Solution:
The unstandardized multiple regression equation with unemployment
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
The descriptive statistics is given in the table below,
Turnout |
Unemployment Rate |
% Negative Ads |
|
63.6 | 8.2 | 55.8 | |
5.5 | 1.7 | 5.3 |
Formula used:
The formula to calculate the partial slopes for the independent variables is given by,
And,
Where,
The least square multiple regression line is given by,
The formula to calculate the
Calculation:
From the given information,
The formula for partial slopes of unemployment rate is given by,
Substitute 5.5 for
The formula for partial slopes of negative ads is given by,
Substitute 5.5 for
The formula to calculate the
From equation
The least square multiple regression line is given by,
From equation
For predicted value of
Thus, the unstandardized multiple regression equation with unemployment
Conclusion:
Therefore, the unstandardized multiple regression equation with unemployment

(d)
To find:
The beta weights for each given independent variable and the variable with the stronger impact on turnout.
Answer to Problem 13.1P
Solution:
The beta weight for unemployment rate is 0.6676 and for negative ads is
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
The descriptive statistics is given in the table below,
Turnout |
Unemployment Rate |
% Negative Ads |
|
63.6 | 8.2 | 55.8 | |
5.5 | 1.7 | 5.3 |
Formula used:
The formula to calculate the beta weights for two independent variables is given by,
And,
Where,
Calculation:
From the given information and part
The formula to calculate the beta weights for unemployment rate is given by,
Substitute 5.5 for
The formula to calculate the beta weights for negative ads is given by,
Substitute 5.5 for
Compare the beta weights, the unemployment rate has the stronger effect than the negative ads on turnouts, the net effect of the first independent variable after controlling the effect of negative ads is positive, while the net effect of second independent variable is negative.
Conclusion:
Therefore, the beta weight for unemployment rate is 0.6676 and for negative ads is

(e)
To find:
The coefficient of multiple determination.
Answer to Problem 13.1P
Solution:
The coefficient of multiple determination is 0.985 and 98.5% of the variance in voter turnout is explained by the two independent variables combined.
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
The descriptive statistics is given in the table below,
Turnout |
Unemployment Rate |
% Negative Ads |
|
63.6 | 8.2 | 55.8 | |
5.5 | 1.7 | 5.3 |
Formula used:
The formula to calculate the coefficient of multiple determination is given by,
Where,
Calculation:
From the given information and part
The formula to calculate the coefficient of multiple determination is given by,
Substitute 0.95 for
Thus, 98.5% of the variance in voter turnout is explained by the two independent variables combined.
Conclusion:
Therefore, the coefficient of multiple determination is 0.985 and 98.5% of the variance in voter turnout is explained by the two independent variables combined.

(f)
To explain:
The relationship among the given three variables.
Answer to Problem 13.1P
Solution:
The variation explained between turnout and unemployment rate while controlling for negative advertising is 95%. The variation explained between turnout and negative advertising while controlling for unemployment is in negative 89%, but 98.5% of the variance in voter turnout is explained by unemployment rate and negative ads combined.
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
The descriptive statistics is given in the table below,
Turnout |
Unemployment Rate |
% Negative Ads |
|
63.6 | 8.2 | 55.8 | |
5.5 | 1.7 | 5.3 |
Approach:
The variation explained between turnout and unemployment rate while controlling for negative advertising is 95%. The variation explained between turnout and negative advertising while controlling for unemployment is in negative 89%, but 98.5% of the variance in voter turnout is explained by unemployment rate and negative ads combined.
Want to see more full solutions like this?
Chapter 13 Solutions
ESSENTIALS OF STATISTICS-W/APLIA
- The U.S. Postal Service will ship a Priority Mail® Large Flat Rate Box (12" 3 12" 3 5½") any where in the United States for a fixed price, regardless of weight. The weights (ounces) of 20 ran domly chosen boxes are shown below. (a) Make a stem-and-leaf diagram. (b) Make a histogram. (c) Describe the shape of the distribution. Weights 72 86 28 67 64 65 45 86 31 32 39 92 90 91 84 62 80 74 63 86arrow_forward(a) What is a bimodal histogram? (b) Explain the difference between left-skewed, symmetric, and right-skewed histograms. (c) What is an outlierarrow_forward(a) Test the hypothesis. Consider the hypothesis test Ho = : against H₁o < 02. Suppose that the sample sizes aren₁ = 7 and n₂ = 13 and that $² = 22.4 and $22 = 28.2. Use α = 0.05. Ho is not ✓ rejected. 9-9 IV (b) Find a 95% confidence interval on of 102. Round your answer to two decimal places (e.g. 98.76).arrow_forward
- Let us suppose we have some article reported on a study of potential sources of injury to equine veterinarians conducted at a university veterinary hospital. Forces on the hand were measured for several common activities that veterinarians engage in when examining or treating horses. We will consider the forces on the hands for two tasks, lifting and using ultrasound. Assume that both sample sizes are 6, the sample mean force for lifting was 6.2 pounds with standard deviation 1.5 pounds, and the sample mean force for using ultrasound was 6.4 pounds with standard deviation 0.3 pounds. Assume that the standard deviations are known. Suppose that you wanted to detect a true difference in mean force of 0.25 pounds on the hands for these two activities. Under the null hypothesis, 40 = 0. What level of type II error would you recommend here? Round your answer to four decimal places (e.g. 98.7654). Use a = 0.05. β = i What sample size would be required? Assume the sample sizes are to be equal.…arrow_forward= Consider the hypothesis test Ho: μ₁ = μ₂ against H₁ μ₁ μ2. Suppose that sample sizes are n₁ = 15 and n₂ = 15, that x1 = 4.7 and X2 = 7.8 and that s² = 4 and s² = 6.26. Assume that o and that the data are drawn from normal distributions. Use απ 0.05. (a) Test the hypothesis and find the P-value. (b) What is the power of the test in part (a) for a true difference in means of 3? (c) Assuming equal sample sizes, what sample size should be used to obtain ẞ = 0.05 if the true difference in means is - 2? Assume that α = 0.05. (a) The null hypothesis is 98.7654). rejected. The P-value is 0.0008 (b) The power is 0.94 . Round your answer to four decimal places (e.g. Round your answer to two decimal places (e.g. 98.76). (c) n₁ = n2 = 1 . Round your answer to the nearest integer.arrow_forwardConsider the hypothesis test Ho: = 622 against H₁: 6 > 62. Suppose that the sample sizes are n₁ = 20 and n₂ = 8, and that = 4.5; s=2.3. Use a = 0.01. (a) Test the hypothesis. Round your answers to two decimal places (e.g. 98.76). The test statistic is fo = i The critical value is f = Conclusion: i the null hypothesis at a = 0.01. (b) Construct the confidence interval on 02/022 which can be used to test the hypothesis: (Round your answer to two decimal places (e.g. 98.76).) iarrow_forward
- 2011 listing by carmax of the ages and prices of various corollas in a ceratin regionarrow_forwardس 11/ أ . اذا كانت 1 + x) = 2 x 3 + 2 x 2 + x) هي متعددة حدود محسوبة باستخدام طريقة الفروقات المنتهية (finite differences) من جدول البيانات التالي للدالة (f(x . احسب قيمة . ( 2 درجة ) xi k=0 k=1 k=2 k=3 0 3 1 2 2 2 3 αarrow_forward1. Differentiate between discrete and continuous random variables, providing examples for each type. 2. Consider a discrete random variable representing the number of patients visiting a clinic each day. The probabilities for the number of visits are as follows: 0 visits: P(0) = 0.2 1 visit: P(1) = 0.3 2 visits: P(2) = 0.5 Using this information, calculate the expected value (mean) of the number of patient visits per day. Show all your workings clearly. Rubric to follow Definition of Random variables ( clearly and accurately differentiate between discrete and continuous random variables with appropriate examples for each) Identification of discrete random variable (correctly identifies "number of patient visits" as a discrete random variable and explains reasoning clearly.) Calculation of probabilities (uses the probabilities correctly in the calculation, showing all steps clearly and logically) Expected value calculation (calculate the expected value (mean)…arrow_forward
- if the b coloumn of a z table disappeared what would be used to determine b column probabilitiesarrow_forwardConstruct a model of population flow between metropolitan and nonmetropolitan areas of a given country, given that their respective populations in 2015 were 263 million and 45 million. The probabilities are given by the following matrix. (from) (to) metro nonmetro 0.99 0.02 metro 0.01 0.98 nonmetro Predict the population distributions of metropolitan and nonmetropolitan areas for the years 2016 through 2020 (in millions, to four decimal places). (Let x, through x5 represent the years 2016 through 2020, respectively.) x₁ = x2 X3 261.27 46.73 11 259.59 48.41 11 257.96 50.04 11 256.39 51.61 11 tarrow_forwardIf the average price of a new one family home is $246,300 with a standard deviation of $15,000 find the minimum and maximum prices of the houses that a contractor will build to satisfy 88% of the market valuearrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman





