Concept explainers
The data sets in the first three problems are unrealistically small to allow you to practice the computational routines presented in this chapter. Most problems use SPSS.
In problem 12.1, data regarding voter turnout in five cities was presented. For the sake of convenience, the data for three of the variables arc presented again here along with
City | Turnout | Unemployment Rate | % Negative Ads | |
A | 55 | 5 | 60 | |
B | 60 | 8 | 63 | |
C | 65 | 9 | 55 | |
D | 68 | 9 | 53 | |
E | 70 | 10 | 48 | |
|
63.6 | 8.2 | 55.8 | |
|
5.5 | 1.7 | 5.3 | |
Unemployment Rate |
Negative Ads | |||
Turnout | 0.95 |
|
||
Unemployment rate |
|
|||
a. Compute the partial
b. Compute the partial correlation coefficient for the relationship between turnout
c. Find the unstandardized multiple regression equation with unemployment
d. Compute beta-weights for each independent variable. Which has the stronger impact on turnout? (HINT: Use Formulas 13. 7 and 13.8 to calculate the beta-weights.)
e. Compute the coefficient of multiple determination
f. Write a paragraph summarizing your conclusions about the relationships among these three variables.
(a)
To find:
The partial correlation coefficient between turnout and unemployment while controlling for the effect of negative advertising.
Answer to Problem 13.1P
Solution:
The partial correlation coefficient between turnout and unemployment while controlling for the effect of negative advertising is 0.97 and the relationship between turnout and unemployment rate is direct.
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
Formula used:
The formula to calculate the first order partial correlation is given by,
Where,
Calculation:
From the given correlation matrix, the zero order correlations are,
And,
Substitute 0.95 for
Simplify further,
The first order partial correlation
Conclusion:
Therefore, the partial correlation coefficient between turnout and unemployment while controlling for the effect of negative advertising is 0.97 and the relationship between turnout and unemployment rate is direct.
(b)
To find:
The partial correlation coefficient between turnout and negative ads while controlling for the effect of unemployment.
Answer to Problem 13.1P
Solution:
The partial correlation coefficient between turnout and negative ads while controlling for the effect of unemployment is
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
Formula used:
The formula to calculate the first order partial correlation is given by,
Where,
Calculation:
From the given correlation matrix, the zero order correlations are,
And,
Substitute
Simplify further,
The first order partial correlation
Conclusion:
Therefore, the partial correlation coefficient between turnout and negative ads while controlling for the effect of unemployment is
(c)
To find:
The unstandardized multiple regression equation with unemployment
Answer to Problem 13.1P
Solution:
The unstandardized multiple regression equation with unemployment
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
The descriptive statistics is given in the table below,
Turnout |
Unemployment Rate |
% Negative Ads |
|
63.6 | 8.2 | 55.8 | |
5.5 | 1.7 | 5.3 |
Formula used:
The formula to calculate the partial slopes for the independent variables is given by,
And,
Where,
The least square multiple regression line is given by,
The formula to calculate the
Calculation:
From the given information,
The formula for partial slopes of unemployment rate is given by,
Substitute 5.5 for
The formula for partial slopes of negative ads is given by,
Substitute 5.5 for
The formula to calculate the
From equation
The least square multiple regression line is given by,
From equation
For predicted value of
Thus, the unstandardized multiple regression equation with unemployment
Conclusion:
Therefore, the unstandardized multiple regression equation with unemployment
(d)
To find:
The beta weights for each given independent variable and the variable with the stronger impact on turnout.
Answer to Problem 13.1P
Solution:
The beta weight for unemployment rate is 0.6676 and for negative ads is
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
The descriptive statistics is given in the table below,
Turnout |
Unemployment Rate |
% Negative Ads |
|
63.6 | 8.2 | 55.8 | |
5.5 | 1.7 | 5.3 |
Formula used:
The formula to calculate the beta weights for two independent variables is given by,
And,
Where,
Calculation:
From the given information and part
The formula to calculate the beta weights for unemployment rate is given by,
Substitute 5.5 for
The formula to calculate the beta weights for negative ads is given by,
Substitute 5.5 for
Compare the beta weights, the unemployment rate has the stronger effect than the negative ads on turnouts, the net effect of the first independent variable after controlling the effect of negative ads is positive, while the net effect of second independent variable is negative.
Conclusion:
Therefore, the beta weight for unemployment rate is 0.6676 and for negative ads is
(e)
To find:
The coefficient of multiple determination.
Answer to Problem 13.1P
Solution:
The coefficient of multiple determination is 0.985 and 98.5% of the variance in voter turnout is explained by the two independent variables combined.
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
The descriptive statistics is given in the table below,
Turnout |
Unemployment Rate |
% Negative Ads |
|
63.6 | 8.2 | 55.8 | |
5.5 | 1.7 | 5.3 |
Formula used:
The formula to calculate the coefficient of multiple determination is given by,
Where,
Calculation:
From the given information and part
The formula to calculate the coefficient of multiple determination is given by,
Substitute 0.95 for
Thus, 98.5% of the variance in voter turnout is explained by the two independent variables combined.
Conclusion:
Therefore, the coefficient of multiple determination is 0.985 and 98.5% of the variance in voter turnout is explained by the two independent variables combined.
(f)
To explain:
The relationship among the given three variables.
Answer to Problem 13.1P
Solution:
The variation explained between turnout and unemployment rate while controlling for negative advertising is 95%. The variation explained between turnout and negative advertising while controlling for unemployment is in negative 89%, but 98.5% of the variance in voter turnout is explained by unemployment rate and negative ads combined.
Explanation of Solution
Given:
The correlation matrix is given in the table below,
Unemployment Rate |
Negative Ads |
|
Turnout |
0.95 | |
Unemployment rate |
The descriptive statistics is given in the table below,
Turnout |
Unemployment Rate |
% Negative Ads |
|
63.6 | 8.2 | 55.8 | |
5.5 | 1.7 | 5.3 |
Approach:
The variation explained between turnout and unemployment rate while controlling for negative advertising is 95%. The variation explained between turnout and negative advertising while controlling for unemployment is in negative 89%, but 98.5% of the variance in voter turnout is explained by unemployment rate and negative ads combined.
Want to see more full solutions like this?
- The average number of minutes Americans commute to work is 27.7 minutes (Sterling's Best Places, April 13, 2012). The average commute time in minutes for 48 cities are as follows: Click on the datafile logo to reference the data. DATA file Albuquerque 23.3 Jacksonville 26.2 Phoenix 28.3 Atlanta 28.3 Kansas City 23.4 Pittsburgh 25.0 Austin 24.6 Las Vegas 28.4 Portland 26.4 Baltimore 32.1 Little Rock 20.1 Providence 23.6 Boston 31.7 Los Angeles 32.2 Richmond 23.4 Charlotte 25.8 Louisville 21.4 Sacramento 25.8 Chicago 38.1 Memphis 23.8 Salt Lake City 20.2 Cincinnati 24.9 Miami 30.7 San Antonio 26.1 Cleveland 26.8 Milwaukee 24.8 San Diego 24.8 Columbus 23.4 Minneapolis 23.6 San Francisco 32.6 Dallas 28.5 Nashville 25.3 San Jose 28.5 Denver 28.1 New Orleans 31.7 Seattle 27.3 Detroit 29.3 New York 43.8 St. Louis 26.8 El Paso 24.4 Oklahoma City 22.0 Tucson 24.0 Fresno 23.0 Orlando 27.1 Tulsa 20.1 Indianapolis 24.8 Philadelphia 34.2 Washington, D.C. 32.8 a. What is the mean commute time for…arrow_forwardMorningstar tracks the total return for a large number of mutual funds. The following table shows the total return and the number of funds for four categories of mutual funds. Click on the datafile logo to reference the data. DATA file Type of Fund Domestic Equity Number of Funds Total Return (%) 9191 4.65 International Equity 2621 18.15 Hybrid 1419 2900 11.36 6.75 Specialty Stock a. Using the number of funds as weights, compute the weighted average total return for these mutual funds. (to 2 decimals) % b. Is there any difficulty associated with using the "number of funds" as the weights in computing the weighted average total return in part (a)? Discuss. What else might be used for weights? The input in the box below will not be graded, but may be reviewed and considered by your instructor. c. Suppose you invested $10,000 in this group of mutual funds and diversified the investment by placing $2000 in Domestic Equity funds, $4000 in International Equity funds, $3000 in Specialty Stock…arrow_forwardThe days to maturity for a sample of five money market funds are shown here. The dollar amounts invested in the funds are provided. Days to Maturity 20 Dollar Value ($ millions) 20 12 30 7 10 5 6 15 10 Use the weighted mean to determine the mean number of days to maturity for dollars invested in these five money market funds (to 1 decimal). daysarrow_forward
- c. What are the first and third quartiles? First Quartiles (to 1 decimals) Third Quartiles (to 4 decimals) × ☑ Which companies spend the most money on advertising? Business Insider maintains a list of the top-spending companies. In 2014, Procter & Gamble spent more than any other company, a whopping $5 billion. In second place was Comcast, which spent $3.08 billion (Business Insider website, December 2014). The top 12 companies and the amount each spent on advertising in billions of dollars are as follows. Click on the datafile logo to reference the data. DATA file Company Procter & Gamble Comcast Advertising ($billions) $5.00 3.08 2.91 Company American Express General Motors Advertising ($billions) $2.19 2.15 ETET AT&T Ford Verizon L'Oreal 2.56 2.44 2.34 Toyota Fiat Chrysler Walt Disney Company J.P Morgan a. What is the mean amount spent on advertising? (to 2 decimals) 2.55 b. What is the median amount spent on advertising? (to 3 decimals) 2.09 1.97 1.96 1.88arrow_forwardMartinez Auto Supplies has retail stores located in eight cities in California. The price they charge for a particular product in each city are vary because of differing competitive conditions. For instance, the price they charge for a case of a popular brand of motor oil in each city follows. Also shown are the number of cases that Martinez Auto sold last quarter in each city. City Price ($) Sales (cases) Bakersfield 34.99 501 Los Angeles 38.99 1425 Modesto 36.00 294 Oakland 33.59 882 Sacramento 40.99 715 San Diego 38.59 1088 San Francisco 39.59 1644 San Jose 37.99 819 Compute the average sales price per case for this product during the last quarter? Round your answer to two decimal places.arrow_forwardConsider the following data and corresponding weights. xi Weight(wi) 3.2 6 2.0 3 2.5 2 5.0 8 a. Compute the weighted mean (to 2 decimals). b. Compute the sample mean of the four data values without weighting. Note the difference in the results provided by the two computations (to 3 decimals).arrow_forward
- Expert only,if you don't know it don't attempt it, no Artificial intelligence or screen shot it solvingarrow_forwardFor context, the image provided below is a quesion from a Sepetember, 2024 past paper in statistical modelingarrow_forwardFor context, the images attached below (the question and the related figure) is from a january 2024 past paperarrow_forward
- For context, the image attached below is a question from a June 2024 past paper in statisical modelingarrow_forwardFor context, the images attached below are a question from a June, 2024 past paper in statistical modelingarrow_forwardFor context, the images attached below (question and related graph) are from a February 2024 past paper in statistical modelingarrow_forward
- MATLAB: An Introduction with ApplicationsStatisticsISBN:9781119256830Author:Amos GilatPublisher:John Wiley & Sons IncProbability and Statistics for Engineering and th...StatisticsISBN:9781305251809Author:Jay L. DevorePublisher:Cengage LearningStatistics for The Behavioral Sciences (MindTap C...StatisticsISBN:9781305504912Author:Frederick J Gravetter, Larry B. WallnauPublisher:Cengage Learning
- Elementary Statistics: Picturing the World (7th E...StatisticsISBN:9780134683416Author:Ron Larson, Betsy FarberPublisher:PEARSONThe Basic Practice of StatisticsStatisticsISBN:9781319042578Author:David S. Moore, William I. Notz, Michael A. FlignerPublisher:W. H. FreemanIntroduction to the Practice of StatisticsStatisticsISBN:9781319013387Author:David S. Moore, George P. McCabe, Bruce A. CraigPublisher:W. H. Freeman