Concept explainers
A mixture of liquids A and B exhibits ideal behavior At 84°C, the total vapor pressure of a solution containing 1.2 moles of A and 2.3 moles of B is 331 mmHg. Upon the addition of another mole of B to the solution, the vapor pressure increases to 347 mmHg. Calculate the vapor pressure of pure A and B at 84°C.
![Check Mark](/static/check-mark.png)
Interpretation:
Vapor pressure of pure A and B solutions at
Concept introduction:
Raoult’s law states that in an ideal mixture of liquid solution, partial pressure of every component is equal to its mole fraction multiplied into vapour pressure of its pure components.
Where,
Answer to Problem 13.141QP
Vapor pressure of pure A solution =
Vapor pressure of pure B solution =
Record the given data
Vapor pressure of the solution =
Amount of solution A =
Amount of solution B =
Increased vapor pressure of the solution =
Explanation of Solution
Explanation
Given data are recorded as shown.
To calculate mole fraction of total solution
Substituting in
By plugging in the values of mole fraction of solution A and B, mole fraction of total solution has calculated.
To calculate mole fraction of total solution after additional moles of B
Substituting in
By plugging in the values of mole fraction of solution A and mole fraction of solution after addition of solution B, after additional moles of B has calculated.
To calculate vapor pressure of pure solution of A and B
Substituting equation (1) into (2) we get,
Substituting the value of
By substituting the equation (1) into equation (2), the vapor pressure of pure solution B has calculated and by subtracting this value into
Vapor pressure of pure solution A has calculated as
Vapor pressure of pure solution B has calculated as
Want to see more full solutions like this?
Chapter 13 Solutions
CHEMISTRY: ATOMS FIRST VOL 1 W/CONNECT
- Label the spectrum with spectroscopyarrow_forwardQ1: Draw the most stable and the least stable Newman projections about the C2-C3 bond for each of the following isomers (A-C). Are the barriers to rotation identical for enantiomers A and B? How about the diastereomers (A versus C or B versus C)? enantiomers H Br H Br (S) CH3 H3C (S) (R) CH3 H3C H Br A Br H C H Br H3C (R) B (R)CH3 H Br H Br H3C (R) (S) CH3 Br H D identicalarrow_forwardLabel the spectrumarrow_forward
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax
![Text book image](https://www.bartleby.com/isbn_cover_images/9780534420123/9780534420123_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285199047/9781285199047_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781938168390/9781938168390_smallCoverImage.gif)