The concentration of NO 2 after 2 .5×10 2 sec and half-life period has to be calculated. Concept introduction: Integrated rate law for second order reactions: Taking in the example of following reaction, aA → products And the reaction follows second order rate law, Then the relationship between the concentration of A and time can be mathematically expressed as, 1 [ A ] t = kt+ 1 [ A ] 0 The above expression is called as integrated rate for second order reactions. Half life for second order reactions: In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A). The half-life of second order reaction can be calculated using the equation, t 1/2 = 1 (k [ A ] 0 ) Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
The concentration of NO 2 after 2 .5×10 2 sec and half-life period has to be calculated. Concept introduction: Integrated rate law for second order reactions: Taking in the example of following reaction, aA → products And the reaction follows second order rate law, Then the relationship between the concentration of A and time can be mathematically expressed as, 1 [ A ] t = kt+ 1 [ A ] 0 The above expression is called as integrated rate for second order reactions. Half life for second order reactions: In second order reaction, the half-life is inversely proportional to the initial concentration of the reactant (A). The half-life of second order reaction can be calculated using the equation, t 1/2 = 1 (k [ A ] 0 ) Since the reactant will be consumed in lesser amount of time, these reactions will have shorter half-life.
The concentration of NO2 after 2.5×102sec = 4.7×10-3M.
To calculate the half life of the reaction
The half-life of second order reaction can be calculated using the equation,
t1/2=1(k[A]0)
Given,
Concentration of NO2(A)=0.050M
Rate constant = 0.775L/(mol.s)
Then, the half life period is calculated as,
t1/2=1(0.755L(mol.s))(0.050mol/L)t1/2=25.80=26s
The half-life period of the reaction = 26s.
Conclusion
The concentration of NO2 after 2.5×102sec and half-life period was calculated using the integrated law and half-life period for second order reactions and were found to be 4.7×10-3M and 26s.
Want to see more full solutions like this?
Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Draw the structure of the major organic product(s) of the reaction.
H3C
1. DIBAH, toluene
-CH3
+
2. H3O
DIBAH = diisobutylaluminum hydride,
[(CH3)2CHCH2]2AIH
Which of the following is not an intermediate of the reaction below? Why is the correct answer C? Please explain what is happening. Please include a detailed explanation and a drawing of steps needed to understand the reaction or question.
Which of the following is the product of the reaction between acetone, CH3COCH3 and methyl amine, CH3NH2? Why is the correct answer A? Please explain what is happening. Please include a detailed explanation and a drawing of steps needed to understand the reaction or question.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell