For Exercises 105–110, factor the expressions over the set of complex numbers. For assistance, consider these examples. In Chapter R we saw that some expressions factor over the set of integers. For example: x 2 − 4 = ( x + 2 ) ( x − 2 ) . Some expressions factor over the set of irrational numbers. For example: x 2 − 5 = ( x + 5 ) ( x − 5 ) . To factor an expression such as x2 1 4, we need to factor over the set of complex numbers. For example, verify that x 2 + 4 = ( x + 2 i ) ( x − 2 i ) . a. x 2 − 64 b. x 2 + 64
For Exercises 105–110, factor the expressions over the set of complex numbers. For assistance, consider these examples. In Chapter R we saw that some expressions factor over the set of integers. For example: x 2 − 4 = ( x + 2 ) ( x − 2 ) . Some expressions factor over the set of irrational numbers. For example: x 2 − 5 = ( x + 5 ) ( x − 5 ) . To factor an expression such as x2 1 4, we need to factor over the set of complex numbers. For example, verify that x 2 + 4 = ( x + 2 i ) ( x − 2 i ) . a. x 2 − 64 b. x 2 + 64
Solution Summary: The author explains how to calculate the factor of the expression x2-64.
For Exercises 105–110, factor the expressions over the set of complex numbers. For assistance, consider these examples.
In Chapter R we saw that some expressions factor over the set of integers. For example:
x
2
−
4
=
(
x
+
2
)
(
x
−
2
)
.
Some expressions factor over the set of irrational numbers. For example:
x
2
−
5
=
(
x
+
5
)
(
x
−
5
)
.
To factor an expression such as x2 1 4, we need to factor over the set of complex numbers. For example, verify that
x
2
+
4
=
(
x
+
2
i
)
(
x
−
2
i
)
.
a.
x
2
−
64
b.
x
2
+
64
Combination of a real number and an imaginary number. They are numbers of the form a + b , where a and b are real numbers and i is an imaginary unit. Complex numbers are an extended idea of one-dimensional number line to two-dimensional complex plane.
For Exercises 8–10,
a. Simplify the expression. Do not rationalize the denominator.
b. Find the values of x for which the expression equals zero.
c. Find the values of x for which the denominator is zero.
4x(4x – 5) – 2x² (4)
8.
-6x(6x + 1) – (–3x²)(6)
(6x + 1)2
9.
(4x – 5)?
-
10. V4 – x² - -() 2)
Exercises 38–40 will help you prepare for the material covered in
the first section of the next chapter.
In Exercises 38-39, simplify each algebraic expression.
38. (-9x³ + 7x? - 5x + 3) + (13x + 2r? – &x – 6)
39. (7x3 – 8x? + 9x – 6) – (2x – 6x? – 3x + 9)
40. The figures show the graphs of two functions.
y
y
201
10-
....
-20-
flx) = x³
glx) = -0.3x + 4x + 2
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, algebra and related others by exploring similar questions and additional content below.