Make the indicated pressure conversions.
msp;
Want to see the full answer?
Check out a sample textbook solutionChapter 13 Solutions
EBK INTRODUCTORY CHEMISTRY
- perform stoichiometric ca1cu1uions for reactions involving gases as reactants or products.arrow_forwardA 1.000-g sample of an unknown gas at 0C gives the following data: P(atm) V (L) 0.2500 3.1908 0.5000 1.5928 0.7500 1.0601 1.0000 0.7930 Use these data to calculate the value of the molar mass at each of the given pressures from the ideal gas law (we will call this the apparent molar mass at this pressure). Plot the apparent molar masses against pressure and extrapolate to find the molar mass at zero pressure. Because the ideal gas law is most accurate at low pressures, this extrapolation will give an accurate value for the molar mass. What is the accurate molar mass?arrow_forwardWhile resting, the average 70-kg human male consumes 14 L of pure O2 per hour at 25 C and 100 kPa. How many moles of 02 are consumed by a 70 kg man while resting for 1.0 h?arrow_forward
- The gas in the discharge cell of a laser contains (in mole percent) 11% CO2, 5.3% N2, and 84% He. (a) What is the molar mass of this mixture? (b) Calculate the density of this gas mixture at 32C and 758 mm Hg. (c) What is the ratio of the density of this gas to that of air (MM=29.0g/mol)at the same conditions?arrow_forward5-107 If 60.0 g of NH3 occupies 35.1 L under a pressure of 77.2 in. Hg, what is the temperature of the gas, in °C?arrow_forwardUnder what conditions does the behavior of a real gas begin to differ significantly from the ideal gas law?arrow_forward
- Exhaled air contains 74.5% N2, 15.7% O2, 3.6% CO2, and 6.2% H2O (mole percent). (a) Calculate the molar mass of exhaled air. (b) Calculate the density of exhaled air at 37C and 757 mm Hg and compare the value you obtained with that of ordinary air (MM=29.0g/mol) under the same conditions.arrow_forwardIf 1 cubic foot-28.3 L-of air at common room conditions of 230C and 0.985 bar is adjusted to STP, what does the volume become?arrow_forwardWhat is the value of FP for a sample of gas whose temperature is -33.0 C and volume is 0.0250 L? What temperature is required to change the volume to 66.9 cm3?arrow_forward
- Helium gas, He, at 22C and 1.00 atm occupied a vessel whose volume was 2.54 L. What volume would this gas occupy if it were cooled to liquid-nitrogen temperature (197C)?arrow_forwardA tank is filled with gas to a pressure of 875 mm Hg at 25C. The gas is transferred without loss to a tank twice the size of the original tank. If the pressure is to remain constant, at what temperature (in C) should the tank be kept?arrow_forwardCalculate the molar volume of ethane at 1.00 atm and 0C and at 10.0 atm and 0C, using the van der Waals equation. The van der Waals constants are given in Table 5.7. To simplify, note that the term n2a/V2 is small compared with P. Hence, it may be approximated with negligible error by substituting nRT/P from the ideal gas law for V in this term. Then the van der Waals equation can be solved for the volume. Compare the results with the values predicted by the ideal gas law.arrow_forward
- World of Chemistry, 3rd editionChemistryISBN:9781133109655Author:Steven S. Zumdahl, Susan L. Zumdahl, Donald J. DeCostePublisher:Brooks / Cole / Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Introductory Chemistry: An Active Learning Approa...ChemistryISBN:9781305079250Author:Mark S. Cracolice, Ed PetersPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningPrinciples of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage Learning