The pressure at which 95 % of the Oxygen molecules dissociate is to be calculated. Concept introduction: The equilibrium constant K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration. The equilibrium constant depends upon temperature. Law of mass action is applicable on the equilibrium reactions. The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature. The dissociation of the species is denotes by the symbol α . To determine: The pressure at which 95 % of the Oxygen molecules dissociate at the constant temperature.
The pressure at which 95 % of the Oxygen molecules dissociate is to be calculated. Concept introduction: The equilibrium constant K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration. The equilibrium constant depends upon temperature. Law of mass action is applicable on the equilibrium reactions. The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature. The dissociation of the species is denotes by the symbol α . To determine: The pressure at which 95 % of the Oxygen molecules dissociate at the constant temperature.
Solution Summary: The author explains that the equilibrium constant K describes the ratio of the reactant to the product on equilibrium conditions in terms of molar concentration.
Interpretation: The pressure at which
95% of the Oxygen molecules dissociate is to be calculated.
Concept introduction: The equilibrium constant
K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration.
The equilibrium constant depends upon temperature.
Law of mass action is applicable on the equilibrium reactions.
The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature.
The dissociation of the species is denotes by the symbol
α.
To determine: The pressure at which
95% of the Oxygen molecules dissociate at the constant temperature.
In the drawing area below, draw the major products of this organic reaction:
1. NaOH
?
2. CH3Br
If there are no major products, because nothing much will happen to the reactant under these reaction conditions, check the box under the drawing area
instead.
No reaction.
Click and drag to start drawing a
structure.
☐ : A
ค
Predict the major products of the following organic reaction:
NC
Δ
?
Some important Notes:
• Draw the major product, or products, of the reaction in the drawing area below.
• If there aren't any products, because no reaction will take place, check the box below the drawing area instead.
• Be sure to draw bonds carefully to show important geometric relationships between substituents.
Note: if your answer contains a complicated ring structure, you must use one of the molecular fragment stamps (available in the menu at right) to enter the
ring structure. You can add any substituents using the pencil tool in the usual way.
Click and drag to start drawing a
structure.
Х
а
Predict the major products of this organic reaction.
Be sure you use dash and wedge bonds to show stereochemistry where it's important.
+
☑
OH
1. TsCl, py
....
文
P
2. t-BuO K
Click and drag to start
drawing a structure.
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell