The pressure at which 95 % of the Oxygen molecules dissociate is to be calculated. Concept introduction: The equilibrium constant K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration. The equilibrium constant depends upon temperature. Law of mass action is applicable on the equilibrium reactions. The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature. The dissociation of the species is denotes by the symbol α . To determine: The pressure at which 95 % of the Oxygen molecules dissociate at the constant temperature.
The pressure at which 95 % of the Oxygen molecules dissociate is to be calculated. Concept introduction: The equilibrium constant K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration. The equilibrium constant depends upon temperature. Law of mass action is applicable on the equilibrium reactions. The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature. The dissociation of the species is denotes by the symbol α . To determine: The pressure at which 95 % of the Oxygen molecules dissociate at the constant temperature.
Solution Summary: The author explains that the equilibrium constant K describes the ratio of the reactant to the product on equilibrium conditions in terms of molar concentration.
Interpretation: The pressure at which
95% of the Oxygen molecules dissociate is to be calculated.
Concept introduction: The equilibrium constant
K describes the ratio of the reactant to the product on the equilibrium conditions in terms of molar concentration.
The equilibrium constant depends upon temperature.
Law of mass action is applicable on the equilibrium reactions.
The Le Chatelier’s principle states that the addition of the reactants shifts the equilibrium to the right while the addition of product shifts the equilibrium to the left at constant temperature.
The dissociation of the species is denotes by the symbol
α.
To determine: The pressure at which
95% of the Oxygen molecules dissociate at the constant temperature.
Check the box under each structure in the table that is an enantiomer of the molecule shown below. If none of them are, check the none of the above box under
the table.
Molecule 1
Molecule 2
IZ
IN
Molecule 4
Molecule 5
ZI
none of the above
☐
Molecule 3
Х
IN
www
Molecule 6
NH
G
Highlight each chiral center in the following molecule. If there are none, then check the box under the drawing area.
There are no chiral centers.
Cl
Cl
Highlight
A student proposes the following two-step synthesis of an ether from an alcohol A:
1. strong base
A
2. R
Is the student's proposed synthesis likely to work?
If you said the proposed synthesis would work, enter the chemical
formula or common abbreviation for an appropriate strong base to use
in Step 1:
If you said the synthesis would work, draw the structure of an alcohol
A, and the structure of the additional reagent R needed in Step 2, in
the drawing area below.
If there's more than one reasonable choice for a good reaction yield,
you can draw any of them.
☐
Click and drag to start drawing a structure.
Yes
No
ロ→ロ
0|0
G
Х
D
: ☐
ப
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell