Here is the Federal Tax Rate Schedule X that species the tax owed by a single taxpayer for a recent year. If Your Taxable Income b Over But Mot Over The Tax You Ooe Is Of the Amount Over $ 0 $ 8500 10% $ 0 $ 8500 $ 34,500 [Math Processing Error] $ 8500 $ 34,500 $ 83,600 [Math Processing Error] $ 34,503 $ 83,600 $ 174,400 $ 17,025.00 + 28% $ 83,603 $174,400 $379,150 $ 42, 449.00 + 33% $ 174,400 $ 379,150 - $110,016.50 + 35% $379 150 The preceding -.ax table can be modeled by a piecewise function , where x represents the taxable income ot a single taxpayer and T(x) is the tax owed T ( x ) = { 0.10 x if 0 < x ≤ 8500 850.00 + 0.25 x ( x − 34 , 500 ) if 8500 < x ≤ 34 , 500 4750.00 + 0.25 ( x − 34 , 500 ) if 34 , 500 < x ≤ 83 , 600 17 , 025.00 + 0.28 ( x − 83 , 600 ) if 83 , 600 < x ≤ 174 , 400 ? _ if 174 , 400 < x ≤ 379 , 150 ? _ if x > 379 , 150. In Exercises 109-110, refer to the preceding tax table. Find the algebraic expression for the missing piece of T(z) that models tax owed for the domain ( 379 , 150 , ∞ ) .
Here is the Federal Tax Rate Schedule X that species the tax owed by a single taxpayer for a recent year. If Your Taxable Income b Over But Mot Over The Tax You Ooe Is Of the Amount Over $ 0 $ 8500 10% $ 0 $ 8500 $ 34,500 [Math Processing Error] $ 8500 $ 34,500 $ 83,600 [Math Processing Error] $ 34,503 $ 83,600 $ 174,400 $ 17,025.00 + 28% $ 83,603 $174,400 $379,150 $ 42, 449.00 + 33% $ 174,400 $ 379,150 - $110,016.50 + 35% $379 150 The preceding -.ax table can be modeled by a piecewise function , where x represents the taxable income ot a single taxpayer and T(x) is the tax owed T ( x ) = { 0.10 x if 0 < x ≤ 8500 850.00 + 0.25 x ( x − 34 , 500 ) if 8500 < x ≤ 34 , 500 4750.00 + 0.25 ( x − 34 , 500 ) if 34 , 500 < x ≤ 83 , 600 17 , 025.00 + 0.28 ( x − 83 , 600 ) if 83 , 600 < x ≤ 174 , 400 ? _ if 174 , 400 < x ≤ 379 , 150 ? _ if x > 379 , 150. In Exercises 109-110, refer to the preceding tax table. Find the algebraic expression for the missing piece of T(z) that models tax owed for the domain ( 379 , 150 , ∞ ) .
Solution Summary: The author calculates the algebraic expression for the missing pieces of function T(x)=l0.1x
Here is the Federal Tax Rate Schedule X that species the tax owed by a single taxpayer for a recent year.
If Your Taxable Income b Over
But Mot Over
The Tax You Ooe Is
Of the Amount Over
$ 0
$ 8500
10%
$ 0
$ 8500
$ 34,500
[Math Processing Error]
$ 8500
$ 34,500
$ 83,600
[Math Processing Error]
$ 34,503
$ 83,600
$ 174,400
$ 17,025.00 + 28%
$ 83,603
$174,400
$379,150
$ 42, 449.00 + 33%
$ 174,400
$ 379,150
-
$110,016.50 + 35%
$379 150
The preceding -.ax table can be modeled by a piecewise function, where x represents the taxable income ot a single taxpayer and T(x) is the tax owed
T
(
x
)
=
{
0.10
x
if
0
<
x
≤
8500
850.00
+
0.25
x
(
x
−
34
,
500
)
if
8500
<
x
≤
34
,
500
4750.00
+
0.25
(
x
−
34
,
500
)
if
34
,
500
<
x
≤
83
,
600
17
,
025.00
+
0.28
(
x
−
83
,
600
)
if
83
,
600
<
x
≤
174
,
400
?
_
if
174
,
400
<
x
≤
379
,
150
?
_
if
x
>
379
,
150.
In Exercises 109-110, refer to the preceding tax table.
Find the algebraic expression for the missing piece of T(z) that models tax owed for the domain
(
379
,
150
,
∞
)
.
Definition Definition Group of one or more functions defined at different and non-overlapping domains. The rule of a piecewise function is different for different pieces or portions of the domain.
4. Use method of separation of variable to solve the following wave equation
მłu
J²u
subject to
u(0,t) =0, for t> 0,
u(л,t) = 0, for t> 0,
=
t> 0,
at²
ax²'
u(x, 0) = 0,
0.01 x,
ut(x, 0) =
Π
0.01 (π-x),
0
Solve the following heat equation by method of separation variables:
ди
=
at
subject to
u(0,t) =0, for
-16024
ძx2 •
t>0, 0 0,
ux (4,t) = 0, for
t> 0,
u(x, 0) =
(x-3,
\-1,
0 < x ≤2
2≤ x ≤ 4.
ex
5.
important aspects.
Graph f(x)=lnx. Be sure to make your graph big enough to easily read (use the space given.) Label all
6
33
Chapter 1 Solutions
Precalculus, Books A La Carte Edition Plus MyLab Math with eText -- Access Card Package (6th Edition)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
Continuous Probability Distributions - Basic Introduction; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=QxqxdQ_g2uw;License: Standard YouTube License, CC-BY
Probability Density Function (p.d.f.) Finding k (Part 1) | ExamSolutions; Author: ExamSolutions;https://www.youtube.com/watch?v=RsuS2ehsTDM;License: Standard YouTube License, CC-BY
Find the value of k so that the Function is a Probability Density Function; Author: The Math Sorcerer;https://www.youtube.com/watch?v=QqoCZWrVnbA;License: Standard Youtube License