Free-Falling Object In Exercises 103 and 104, use the position function s ( t ) = − 4.9 t 2 + 200 , which gives the height (in meters) of an object that has fallen for t seconds from a height of 200 meters. The velocity at time t = a seconds is given by lim t → a s ( a ) − s ( t ) a − t At what velocity will the object impact the ground?
Free-Falling Object In Exercises 103 and 104, use the position function s ( t ) = − 4.9 t 2 + 200 , which gives the height (in meters) of an object that has fallen for t seconds from a height of 200 meters. The velocity at time t = a seconds is given by lim t → a s ( a ) − s ( t ) a − t At what velocity will the object impact the ground?
Free-Falling Object In Exercises 103 and 104, use the position function
s
(
t
)
=
−
4.9
t
2
+
200
, which gives the height (in meters) of an object that has fallen for t seconds from a height of 200 meters. The velocity at time
t
=
a
seconds is given by
lim
t
→
a
s
(
a
)
−
s
(
t
)
a
−
t
At what velocity will the object impact the ground?
Find the equation of the line / in the figure below. Give exact values using the form y = mx + b.
m =
b =
y
WebAssign Plot
f(x) = 10*
log 9
X
A particle travels along a straight line path given by s=9.5t3-2.2t2-4.5t+9.9 (in meters).
What time does it change direction?
Report the higher of the answers to the nearest 2 decimal places in seconds.
Use the method of disks to find the volume of the solid that is obtained
when the region under the curve y = over the interval [4,17] is rotated
about the x-axis.
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY