USING + UNDERSTANDING MATH CUSTOM
6th Edition
ISBN: 9780137721023
Author: Bennett
Publisher: PEARSON C
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.D, Problem 22E
Average and Extreme Districts. Consider the following
demographic data for hypothetical states. In each case. answer the
following questions. Assume everyone votes along party lines.
a. If districts were drawn randomly. what would the most likely
distribution of House seats?
b. If districts could be drawn without restriction (unlimited gerrymandering). what would be the maximum and minimum number of Republican representatives who could be sent to Congress? Explain how each result could be achieved.
22. The state has 10 representatives and a population of 5 million: party affiliations are 70% Republican and 30% Democrat.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
© ©
Q Tue 7 Jan 10:12 pm
myopenmath.com/assess2/?cid=253523&aid=17...
ookmarks
吕
Student Account...
8 Home | Participant... 001st Meeting with y...
E
F
D
c
G
B
H
I
A
J
P
K
L
N
M
Identify the special angles above. Give your answers in degrees.
A: 0
B: 30
C: 45
D: 60
E: 90
>
१
F: 120 0
G:
H:
1: 180 0
J:
K:
L: 240 0
Next-
M: 270 0
0:
ZÖÄ
N: 300 0
Aa
zoom
P:
Question Help: Message instructor
MacBook Air
Ο
O
Σ
>> | All Bookmarks
The cup on the 9th hole of a golf course is located dead center in the middle of a circular green which is 40 feet in radius. Your ball is located as in the picture below. The ball follows a straight line path and exits the green at the right-most edge. Assume the ball travels 8 ft/sec.
Introduce coordinates so that the cup is the origin of an xy-coordinate system and start by writing down the equations of the circle and the linear path of the ball. Provide numerical answers below with two decimal places of accuracy.
50 feet
green
ball
40 feet
9
cup
ball path
rough
(a) The x-coordinate of the position where the ball enters the green will be
(b) The ball will exit the green exactly
seconds after it is hit.
(c) Suppose that L is a line tangent to the boundary of the golf green and parallel to the path of the ball. Let Q be the point where the line is tangent to the circle. Notice that there are two possible positions for Q. Find the possible x-coordinates of Q:
smallest x-coordinate =…
Draw the unit circle and plot the point P=(8,2). Observe there are TWO lines tangent to the circle passing through the point P. Answer the questions below with 3 decimal places of accuracy.
P
L1
L
(a) The line L₁ is tangent to the unit circle at the point
(b) The tangent line L₁ has equation:
X +
(c) The line L₂ is tangent to the unit circle at the point (
(d) The tangent line 42 has equation:
y=
x +
).
Chapter 12 Solutions
USING + UNDERSTANDING MATH CUSTOM
Ch. 12.A - Prob. 1QQCh. 12.A - Prob. 2QQCh. 12.A - Prob. 3QQCh. 12.A - Prob. 4QQCh. 12.A - Prob. 5QQCh. 12.A - Prob. 6QQCh. 12.A - Prob. 7QQCh. 12.A - Prob. 8QQCh. 12.A - 9. Study Table 12.5. Which candidate received the...Ch. 12.A - 10. What is the primary lesson of the preference...
Ch. 12.A - 1. What is majority rule? When can it definitively...Ch. 12.A - Prob. 2ECh. 12.A - What is a filibuster? What percentage of the vote...Ch. 12.A - Prob. 4ECh. 12.A - Prob. 5ECh. 12.A - Prob. 6ECh. 12.A - Prob. 7ECh. 12.A - Prob. 8ECh. 12.A - Prob. 9ECh. 12.A - Prob. 10ECh. 12.A - 11. Herman won a plurality of the vote, but Hanna...Ch. 12.A - Fred beat Fran using the point system (Borda...Ch. 12.A - 13. Candidate Reagan won the popular vote for the...Ch. 12.A - Prob. 14ECh. 12.A - Prob. 15ECh. 12.A - Prob. 16ECh. 12.A - Prob. 17ECh. 12.A - Prob. 18ECh. 12.A - Prob. 19ECh. 12.A - Presidential Elections. The following tables give...Ch. 12.A - Prob. 21ECh. 12.A - Presidential Elections. The following tables give...Ch. 12.A - 23. Super Majorities.
a. Of the 100 senators in...Ch. 12.A - 24. Super Majorities.
a. According to the bylaws...Ch. 12.A - Prob. 25ECh. 12.A - Prob. 26ECh. 12.A - Prob. 27ECh. 12.A - Prob. 28ECh. 12.A - Prob. 29ECh. 12.A - Prob. 30ECh. 12.A - 31—34. Interpreting Preference Schedules. Answer...Ch. 12.A - 31—34. Interpreting Preference Schedules. Answer...Ch. 12.A - 31—34. Interpreting Preference Schedules. Answer...Ch. 12.A - Prob. 34ECh. 12.A - Prob. 35ECh. 12.A - Prob. 36ECh. 12.A - Prob. 37ECh. 12.A - Prob. 38ECh. 12.A - Prob. 39ECh. 12.A - Prob. 40ECh. 12.A - Prob. 41ECh. 12.A - Prob. 42ECh. 12.A - Prob. 43ECh. 12.A - Condorcet Winner. If a candidate wins all...Ch. 12.A - 45. Condorcet Paradox. Consider the following...Ch. 12.A - 46. Pairwise Comparisons Question.
a. How many...Ch. 12.A - Prob. 47ECh. 12.A - Prob. 48ECh. 12.A - Prob. 49ECh. 12.A - Better Voting. Look for recent news about changes...Ch. 12.A - Prob. 51ECh. 12.A - Academy Awards. The election process for the...Ch. 12.A - Sports Polls. Most men’s and women’s major college...Ch. 12.A - Elections Around the World. Many countries have...Ch. 12.B - l. How many of the four fairness criteria (see p....Ch. 12.B - Prob. 2QQCh. 12.B - Prob. 3QQCh. 12.B - Prob. 4QQCh. 12.B -
5. Suppose that Berman is declared the winner of...Ch. 12.B - 6. Suppose that Freedman is declared the winner of...Ch. 12.B - 7. Notice that if Goldsmith dropped out, Freedman...Ch. 12.B - Prob. 8QQCh. 12.B - Which of the following is not an advantage of...Ch. 12.B - Prob. 10QQCh. 12.B - Briefly summarize each of the four fairness...Ch. 12.B - Prob. 2ECh. 12.B - What is approval voting? How is it different from...Ch. 12.B - Prob. 4ECh. 12.B - Prob. 5ECh. 12.B - Prob. 6ECh. 12.B - Prob. 7ECh. 12.B - Prob. 8ECh. 12.B - Plurality and Criterion 1. Explain in words why...Ch. 12.B - 10. Plurality and Criterion 2. Consider the...Ch. 12.B - 11. Plurality and Criterion 2. Devise a preference...Ch. 12.B - Prob. 12ECh. 12.B - Plurality and Criterion 4. Suppose the plurality...Ch. 12.B - Prob. 14ECh. 12.B - Runoff Methods and Criterion 1. Explain in words...Ch. 12.B - Prob. 16ECh. 12.B - Prob. 17ECh. 12.B - Sequential Runoff and Criterion 2. Devise a...Ch. 12.B - Prob. 19ECh. 12.B - Prob. 20ECh. 12.B - Prob. 21ECh. 12.B - Prob. 22ECh. 12.B - Point System and Criterion 1. Devise your own...Ch. 12.B - 24. Point System and Criterion 2. Suppose the...Ch. 12.B - 25. Point System and Criterion 2. Devise a...Ch. 12.B - Prob. 26ECh. 12.B - Prob. 27ECh. 12.B - Prob. 28ECh. 12.B - Prob. 29ECh. 12.B - Prob. 30ECh. 12.B - Prob. 31ECh. 12.B - Pairwise Comparisons and Criterion 4. Suppose the...Ch. 12.B - Prob. 33ECh. 12.B - Approval Voting. Suppose that Candidates A and B...Ch. 12.B - Prob. 35ECh. 12.B - Power Voting. Imagine that a small company has...Ch. 12.B - Prob. 37ECh. 12.B - Prob. 38ECh. 12.B - Prob. 39ECh. 12.B - Prob. 40ECh. 12.B - Prob. 41ECh. 12.B - Prob. 42ECh. 12.B - Prob. 43ECh. 12.B - Prob. 44ECh. 12.B - Prob. 45ECh. 12.B - Prob. 46ECh. 12.B - Prob. 47ECh. 12.B - Prob. 48ECh. 12.B - Prob. 49ECh. 12.B - Prob. 50ECh. 12.B - Prob. 51ECh. 12.B - 52. Swing Votes. Suppose that the following...Ch. 12.B - Prob. 53ECh. 12.B - Other Fairness Criteria. The fairness criteria...Ch. 12.B - Prob. 55ECh. 12.B - Power Voting and Coalitions. Use the Web...Ch. 12.B - General Voting Power. Find the news report about...Ch. 12.C - Prob. 1QQCh. 12.C - Prob. 2QQCh. 12.C - Prob. 3QQCh. 12.C - 4. Suppose that, in 2030, the census shows that...Ch. 12.C - 5. Consider a school district with 50 schools,...Ch. 12.C - 6. Consider the school district described in...Ch. 12.C - Prob. 7QQCh. 12.C - Prob. 8QQCh. 12.C - Prob. 9QQCh. 12.C - Prob. 10QQCh. 12.C - Prob. 1ECh. 12.C - Prob. 2ECh. 12.C - Prob. 3ECh. 12.C - What is the Alabama paradox? What other paradoxes...Ch. 12.C - Prob. 5ECh. 12.C - What is the quota criterion? Why are violations of...Ch. 12.C - 7. Briefly describe how Webster’s method and the...Ch. 12.C - 8. Explain why Webster’s method and the...Ch. 12.C - is the president of a large company with 12...Ch. 12.C - 10. Charlene is the head judge in a figure skating...Ch. 12.C - Prob. 11ECh. 12.C - Prob. 12ECh. 12.C - Prob. 13ECh. 12.C - Prob. 14ECh. 12.C - Prob. 15ECh. 12.C - Prob. 16ECh. 12.C - Prob. 17ECh. 12.C - 15-18: State Representation. The following table...Ch. 12.C - 19. Standard Quotas in Business. A large company...Ch. 12.C - 20. Standard Quota in Education. Capital...Ch. 12.C - Prob. 21ECh. 12.C - Prob. 22ECh. 12.C - Prob. 23ECh. 12.C - Prob. 24ECh. 12.C - Prob. 25ECh. 12.C - Prob. 26ECh. 12.C - Prob. 27ECh. 12.C - Prob. 28ECh. 12.C - Prob. 29ECh. 12.C - Prob. 30ECh. 12.C - 29-32: Jefferson's Method. Apply Jefferson's...Ch. 12.C - Jefferson's Method. Apply Jefferson's method to...Ch. 12.C - 33. Webster’s Method. Use Webster’s method to...Ch. 12.C - 34. Webster’s Method. Use Webster’s method to...Ch. 12.C - Prob. 35ECh. 12.C - Prob. 36ECh. 12.C - Prob. 37ECh. 12.C - Prob. 38ECh. 12.C - Comparing Methods. Assume 100 delegates are to be...Ch. 12.C - Prob. 40ECh. 12.C - Prob. 41ECh. 12.C - 39-42: Comparing Methods. Assume 100 delegates are...Ch. 12.C - 43-46: Non-House Apportionments. The following...Ch. 12.C - 43-46: Non-House Apportionments. The following...Ch. 12.C - 43-46: Non-House Apportionments. The following...Ch. 12.C - Prob. 46ECh. 12.C - Prob. 47ECh. 12.C - Prob. 48ECh. 12.C - Prob. 49ECh. 12.D - Prob. 1QQCh. 12.D - Prob. 2QQCh. 12.D - 3. If we compare results in presidential elections...Ch. 12.D - 4. In 2010, Republicans in North Carolina received...Ch. 12.D - Prob. 5QQCh. 12.D - Prob. 6QQCh. 12.D - Prob. 7QQCh. 12.D - Prob. 8QQCh. 12.D - Prob. 9QQCh. 12.D - Prob. 10QQCh. 12.D - What is redistricting, and when must it be done?Ch. 12.D - 2. How has the competitiveness of elections for...Ch. 12.D - 3. What is gerrymandering? Where does this term...Ch. 12.D - 4. Briefly describe how the drawing of boundaries...Ch. 12.D - What requirements must be met in drawing district...Ch. 12.D - Briefly describe two ideas for reforming the...Ch. 12.D - In the last election in my home state, 48% of the...Ch. 12.D - Prob. 8ECh. 12.D - Polls show that half voters in our state plan to...Ch. 12.D - Prob. 10ECh. 12.D - Prob. 11ECh. 12.D - Prob. 12ECh. 12.D - Redistricting and House Elections. The 2010 census...Ch. 12.D - Prob. 14ECh. 12.D - Redistricting and House Elections. The 2010 census...Ch. 12.D - Redistricting and House Elections. The 2010 census...Ch. 12.D - Redistricting and House Elections. The 2010 census...Ch. 12.D -
18-23: Average and Extreme Districts. Consider...Ch. 12.D - Prob. 19ECh. 12.D - Prob. 20ECh. 12.D - 18—23: Average and Extreme Districts. Consider the...Ch. 12.D - Average and Extreme Districts. Consider the...Ch. 12.D - Prob. 23ECh. 12.D - Prob. 24ECh. 12.D - Prob. 25ECh. 12.D - Prob. 26ECh. 12.D - Prob. 27ECh. 12.D - Prob. 28ECh. 12.D - 28—29: Drawing Districts Set III. Refer to Figure...Ch. 12.D - 30—32: Drawing Districts Set IV. Refer to Figure...Ch. 12.D - 30—32: Drawing Districts Set IV. Refer to Figure...Ch. 12.D - Prob. 32ECh. 12.D - Prob. 33ECh. 12.D - Prob. 34ECh. 12.D - Prob. 35ECh. 12.D - Prob. 36ECh. 12.D - Prob. 37ECh. 12.D - Prob. 38ECh. 12.D - Prob. 39ECh. 12.D - Prob. 40ECh. 12.D - Prob. 41ECh. 12.D - 42. Redistricting Procedures. Choose a state that...Ch. 12.D - 43. Reform Efforts. Investigate the current status...Ch. 12.D - 44. Mathematical Algorithms for Reform. Search for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Introduce yourself and describe a time when you used data in a personal or professional decision. This could be anything from analyzing sales data on the job to making an informed purchasing decision about a home or car. Describe to Susan how to take a sample of the student population that would not represent the population well. Describe to Susan how to take a sample of the student population that would represent the population well. Finally, describe the relationship of a sample to a population and classify your two samples as random, systematic, cluster, stratified, or convenience.arrow_forwardAnswersarrow_forwardWhat is a solution to a differential equation? We said that a differential equation is an equation that describes the derivative, or derivatives, of a function that is unknown to us. By a solution to a differential equation, we mean simply a function that satisfies this description. 2. Here is a differential equation which describes an unknown position function s(t): ds dt 318 4t+1, ds (a) To check that s(t) = 2t2 + t is a solution to this differential equation, calculate you really do get 4t +1. and check that dt' (b) Is s(t) = 2t2 +++ 4 also a solution to this differential equation? (c) Is s(t)=2t2 + 3t also a solution to this differential equation? ds 1 dt (d) To find all possible solutions, start with the differential equation = 4t + 1, then move dt to the right side of the equation by multiplying, and then integrate both sides. What do you get? (e) Does this differential equation have a unique solution, or an infinite family of solutions?arrow_forward
- these are solutions to a tutorial that was done and im a little lost. can someone please explain to me how these iterations function, for example i Do not know how each set of matrices produces a number if someine could explain how its done and provide steps it would be greatly appreciated thanks.arrow_forwardQ1) Classify the following statements as a true or false statements a. Any ring with identity is a finitely generated right R module.- b. An ideal 22 is small ideal in Z c. A nontrivial direct summand of a module cannot be large or small submodule d. The sum of a finite family of small submodules of a module M is small in M A module M 0 is called directly indecomposable if and only if 0 and M are the only direct summands of M f. A monomorphism a: M-N is said to split if and only if Ker(a) is a direct- summand in M & Z₂ contains no minimal submodules h. Qz is a finitely generated module i. Every divisible Z-module is injective j. Every free module is a projective module Q4) Give an example and explain your claim in each case a) A module M which has two composition senes 7 b) A free subset of a modale c) A free module 24 d) A module contains a direct summand submodule 7, e) A short exact sequence of modules 74.arrow_forward************* ********************************* Q.1) Classify the following statements as a true or false statements: a. If M is a module, then every proper submodule of M is contained in a maximal submodule of M. b. The sum of a finite family of small submodules of a module M is small in M. c. Zz is directly indecomposable. d. An epimorphism a: M→ N is called solit iff Ker(a) is a direct summand in M. e. The Z-module has two composition series. Z 6Z f. Zz does not have a composition series. g. Any finitely generated module is a free module. h. If O→A MW→ 0 is short exact sequence then f is epimorphism. i. If f is a homomorphism then f-1 is also a homomorphism. Maximal C≤A if and only if is simple. Sup Q.4) Give an example and explain your claim in each case: Monomorphism not split. b) A finite free module. c) Semisimple module. d) A small submodule A of a module N and a homomorphism op: MN, but (A) is not small in M.arrow_forward
- Prove that Σ prime p≤x p=3 (mod 10) 1 Ρ = for some constant A. log log x + A+O 1 log x "arrow_forwardProve that, for x ≥ 2, d(n) n2 log x = B ― +0 X (금) n≤x where B is a constant that you should determine.arrow_forwardProve that, for x ≥ 2, > narrow_forwardI need diagram with solutionsarrow_forwardT. Determine the least common denominator and the domain for the 2x-3 10 problem: + x²+6x+8 x²+x-12 3 2x 2. Add: + Simplify and 5x+10 x²-2x-8 state the domain. 7 3. Add/Subtract: x+2 1 + x+6 2x+2 4 Simplify and state the domain. x+1 4 4. Subtract: - Simplify 3x-3 x²-3x+2 and state the domain. 1 15 3x-5 5. Add/Subtract: + 2 2x-14 x²-7x Simplify and state the domain.arrow_forwardQ.1) Classify the following statements as a true or false statements: Q a. A simple ring R is simple as a right R-module. b. Every ideal of ZZ is small ideal. very den to is lovaginz c. A nontrivial direct summand of a module cannot be large or small submodule. d. The sum of a finite family of small submodules of a module M is small in M. e. The direct product of a finite family of projective modules is projective f. The sum of a finite family of large submodules of a module M is large in M. g. Zz contains no minimal submodules. h. Qz has no minimal and no maximal submodules. i. Every divisible Z-module is injective. j. Every projective module is a free module. a homomorp cements Q.4) Give an example and explain your claim in each case: a) A module M which has a largest proper submodule, is directly indecomposable. b) A free subset of a module. c) A finite free module. d) A module contains no a direct summand. e) A short split exact sequence of modules.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
Recommended textbooks for you
- Holt Mcdougal Larson Pre-algebra: Student Edition...AlgebraISBN:9780547587776Author:HOLT MCDOUGALPublisher:HOLT MCDOUGALGlencoe Algebra 1, Student Edition, 9780079039897...AlgebraISBN:9780079039897Author:CarterPublisher:McGraw HillBig Ideas Math A Bridge To Success Algebra 1: Stu...AlgebraISBN:9781680331141Author:HOUGHTON MIFFLIN HARCOURTPublisher:Houghton Mifflin Harcourt
Holt Mcdougal Larson Pre-algebra: Student Edition...
Algebra
ISBN:9780547587776
Author:HOLT MCDOUGAL
Publisher:HOLT MCDOUGAL
Glencoe Algebra 1, Student Edition, 9780079039897...
Algebra
ISBN:9780079039897
Author:Carter
Publisher:McGraw Hill
Big Ideas Math A Bridge To Success Algebra 1: Stu...
Algebra
ISBN:9781680331141
Author:HOUGHTON MIFFLIN HARCOURT
Publisher:Houghton Mifflin Harcourt
Sampling Methods and Bias with Surveys: Crash Course Statistics #10; Author: CrashCourse;https://www.youtube.com/watch?v=Rf-fIpB4D50;License: Standard YouTube License, CC-BY
Statistics: Sampling Methods; Author: Mathispower4u;https://www.youtube.com/watch?v=s6ApdTvgvOs;License: Standard YouTube License, CC-BY