Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
6th Edition
ISBN: 9780321914620
Author: Jeffrey O. Bennett, William L. Briggs
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.A, Problem 31E
To determine
Number of voters who preferred Candidate B to Candidate E.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Each answer must be justified and all your work should appear. You will be
marked on the quality of your explanations.
You can discuss the problems with classmates, but you should write your solutions sepa-
rately (meaning that you cannot copy the same solution from a joint blackboard, for exam-
ple).
Your work should be submitted on Moodle, before February 7 at 5 pm.
1. True or false:
(a) if E is a subspace of V, then dim(E) + dim(E) = dim(V)
(b) Let {i, n} be a basis of the vector space V, where v₁,..., Un are all eigen-
vectors for both the matrix A and the matrix B. Then, any eigenvector of A is
an eigenvector of B.
Justify.
2. Apply Gram-Schmidt orthogonalization to the system of vectors {(1,2,-2), (1, −1, 4), (2, 1, 1)}.
3. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal
projection onto the orthogonal complement E.
(a) The combinations of projections P+Q and PQ correspond to well-known oper-
ators. What are they? Justify your answer.
(b) Show…
pleasd dont use chat gpt
1. True or false:
(a) if E is a subspace of V, then dim(E) + dim(E+) = dim(V)
(b) Let {i, n} be a basis of the vector space V, where vi,..., are all eigen-
vectors for both the matrix A and the matrix B. Then, any eigenvector of A is
an eigenvector of B.
Justify.
2. Apply Gram-Schmidt orthogonalization to the system of vectors {(1, 2, -2), (1, −1, 4), (2, 1, 1)}.
3. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal
projection onto the orthogonal complement E.
(a) The combinations of projections P+Q and PQ correspond to well-known oper-
ators. What are they? Justify your answer.
(b) Show that P - Q is its own inverse.
4. Show that the Frobenius product on n x n-matrices,
(A, B) =
= Tr(B*A),
is an inner product, where B* denotes the Hermitian adjoint of B.
5. Show that if A and B are two n x n-matrices for which {1,..., n} is a basis of eigen-
vectors (for both A and B), then AB = BA.
Remark: It is also true that if AB = BA, then there exists a common…
Chapter 12 Solutions
Using and Understanding Mathematics: A Quantitative Reasoning Approach (6th Edition)
Ch. 12.A - Prob. 1QQCh. 12.A - Prob. 2QQCh. 12.A - Prob. 3QQCh. 12.A - Prob. 4QQCh. 12.A - Prob. 5QQCh. 12.A - Prob. 6QQCh. 12.A - Prob. 7QQCh. 12.A - Prob. 8QQCh. 12.A - 9. Study Table 12.5. Which candidate received the...Ch. 12.A - 10. What is the primary lesson of the preference...
Ch. 12.A - 1. What is majority rule? When can it definitively...Ch. 12.A - Prob. 2ECh. 12.A - What is a filibuster? What percentage of the vote...Ch. 12.A - Prob. 4ECh. 12.A - Prob. 5ECh. 12.A - Prob. 6ECh. 12.A - Prob. 7ECh. 12.A - Prob. 8ECh. 12.A - Prob. 9ECh. 12.A - Prob. 10ECh. 12.A - 11. Herman won a plurality of the vote, but Hanna...Ch. 12.A - Fred beat Fran using the point system (Borda...Ch. 12.A - 13. Candidate Reagan won the popular vote for the...Ch. 12.A - Prob. 14ECh. 12.A - Prob. 15ECh. 12.A - Prob. 16ECh. 12.A - Prob. 17ECh. 12.A - Prob. 18ECh. 12.A - Prob. 19ECh. 12.A - Presidential Elections. The following tables give...Ch. 12.A - Prob. 21ECh. 12.A - Presidential Elections. The following tables give...Ch. 12.A - 23. Super Majorities.
a. Of the 100 senators in...Ch. 12.A - 24. Super Majorities.
a. According to the bylaws...Ch. 12.A - Prob. 25ECh. 12.A - Prob. 26ECh. 12.A - Prob. 27ECh. 12.A - Prob. 28ECh. 12.A - Prob. 29ECh. 12.A - Prob. 30ECh. 12.A - 31—34. Interpreting Preference Schedules. Answer...Ch. 12.A - 31—34. Interpreting Preference Schedules. Answer...Ch. 12.A - 31—34. Interpreting Preference Schedules. Answer...Ch. 12.A - Prob. 34ECh. 12.A - Prob. 35ECh. 12.A - Prob. 36ECh. 12.A - Prob. 37ECh. 12.A - Prob. 38ECh. 12.A - Prob. 39ECh. 12.A - Prob. 40ECh. 12.A - Prob. 41ECh. 12.A - Prob. 42ECh. 12.A - Prob. 43ECh. 12.A - Condorcet Winner. If a candidate wins all...Ch. 12.A - 45. Condorcet Paradox. Consider the following...Ch. 12.A - 46. Pairwise Comparisons Question.
a. How many...Ch. 12.A - Prob. 47ECh. 12.A - Prob. 48ECh. 12.A - Prob. 49ECh. 12.A - Better Voting. Look for recent news about changes...Ch. 12.A - Prob. 51ECh. 12.A - Academy Awards. The election process for the...Ch. 12.A - Sports Polls. Most men’s and women’s major college...Ch. 12.A - Elections Around the World. Many countries have...Ch. 12.B - l. How many of the four fairness criteria (see p....Ch. 12.B - Prob. 2QQCh. 12.B - Prob. 3QQCh. 12.B - Prob. 4QQCh. 12.B -
5. Suppose that Berman is declared the winner of...Ch. 12.B - 6. Suppose that Freedman is declared the winner of...Ch. 12.B - 7. Notice that if Goldsmith dropped out, Freedman...Ch. 12.B - Prob. 8QQCh. 12.B - Which of the following is not an advantage of...Ch. 12.B - Prob. 10QQCh. 12.B - Briefly summarize each of the four fairness...Ch. 12.B - Prob. 2ECh. 12.B - What is approval voting? How is it different from...Ch. 12.B - Prob. 4ECh. 12.B - Prob. 5ECh. 12.B - Prob. 6ECh. 12.B - Prob. 7ECh. 12.B - Prob. 8ECh. 12.B - Plurality and Criterion 1. Explain in words why...Ch. 12.B - 10. Plurality and Criterion 2. Consider the...Ch. 12.B - 11. Plurality and Criterion 2. Devise a preference...Ch. 12.B - Prob. 12ECh. 12.B - Plurality and Criterion 4. Suppose the plurality...Ch. 12.B - Prob. 14ECh. 12.B - Runoff Methods and Criterion 1. Explain in words...Ch. 12.B - Prob. 16ECh. 12.B - Prob. 17ECh. 12.B - Sequential Runoff and Criterion 2. Devise a...Ch. 12.B - Prob. 19ECh. 12.B - Prob. 20ECh. 12.B - Prob. 21ECh. 12.B - Prob. 22ECh. 12.B - Point System and Criterion 1. Devise your own...Ch. 12.B - 24. Point System and Criterion 2. Suppose the...Ch. 12.B - 25. Point System and Criterion 2. Devise a...Ch. 12.B - Prob. 26ECh. 12.B - Prob. 27ECh. 12.B - Prob. 28ECh. 12.B - Prob. 29ECh. 12.B - Prob. 30ECh. 12.B - Prob. 31ECh. 12.B - Pairwise Comparisons and Criterion 4. Suppose the...Ch. 12.B - Prob. 33ECh. 12.B - Approval Voting. Suppose that Candidates A and B...Ch. 12.B - Prob. 35ECh. 12.B - Power Voting. Imagine that a small company has...Ch. 12.B - Prob. 37ECh. 12.B - Prob. 38ECh. 12.B - Prob. 39ECh. 12.B - Prob. 40ECh. 12.B - Prob. 41ECh. 12.B - Prob. 42ECh. 12.B - Prob. 43ECh. 12.B - Prob. 44ECh. 12.B - Prob. 45ECh. 12.B - Prob. 46ECh. 12.B - Prob. 47ECh. 12.B - Prob. 48ECh. 12.B - Prob. 49ECh. 12.B - Prob. 50ECh. 12.B - Prob. 51ECh. 12.B - 52. Swing Votes. Suppose that the following...Ch. 12.B - Prob. 53ECh. 12.B - Other Fairness Criteria. The fairness criteria...Ch. 12.B - Prob. 55ECh. 12.B - Power Voting and Coalitions. Use the Web...Ch. 12.B - General Voting Power. Find the news report about...Ch. 12.C - Prob. 1QQCh. 12.C - Prob. 2QQCh. 12.C - Prob. 3QQCh. 12.C - 4. Suppose that, in 2030, the census shows that...Ch. 12.C - 5. Consider a school district with 50 schools,...Ch. 12.C - 6. Consider the school district described in...Ch. 12.C - Prob. 7QQCh. 12.C - Prob. 8QQCh. 12.C - Prob. 9QQCh. 12.C - Prob. 10QQCh. 12.C - Prob. 1ECh. 12.C - Prob. 2ECh. 12.C - Prob. 3ECh. 12.C - What is the Alabama paradox? What other paradoxes...Ch. 12.C - Prob. 5ECh. 12.C - What is the quota criterion? Why are violations of...Ch. 12.C - 7. Briefly describe how Webster’s method and the...Ch. 12.C - 8. Explain why Webster’s method and the...Ch. 12.C - is the president of a large company with 12...Ch. 12.C - 10. Charlene is the head judge in a figure skating...Ch. 12.C - Prob. 11ECh. 12.C - Prob. 12ECh. 12.C - Prob. 13ECh. 12.C - Prob. 14ECh. 12.C - Prob. 15ECh. 12.C - Prob. 16ECh. 12.C - Prob. 17ECh. 12.C - 15-18: State Representation. The following table...Ch. 12.C - 19. Standard Quotas in Business. A large company...Ch. 12.C - 20. Standard Quota in Education. Capital...Ch. 12.C - Prob. 21ECh. 12.C - Prob. 22ECh. 12.C - Prob. 23ECh. 12.C - Prob. 24ECh. 12.C - Prob. 25ECh. 12.C - Prob. 26ECh. 12.C - Prob. 27ECh. 12.C - Prob. 28ECh. 12.C - Prob. 29ECh. 12.C - Prob. 30ECh. 12.C - 29-32: Jefferson's Method. Apply Jefferson's...Ch. 12.C - Jefferson's Method. Apply Jefferson's method to...Ch. 12.C - 33. Webster’s Method. Use Webster’s method to...Ch. 12.C - 34. Webster’s Method. Use Webster’s method to...Ch. 12.C - Prob. 35ECh. 12.C - Prob. 36ECh. 12.C - Prob. 37ECh. 12.C - Prob. 38ECh. 12.C - Comparing Methods. Assume 100 delegates are to be...Ch. 12.C - Prob. 40ECh. 12.C - Prob. 41ECh. 12.C - 39-42: Comparing Methods. Assume 100 delegates are...Ch. 12.C - 43-46: Non-House Apportionments. The following...Ch. 12.C - 43-46: Non-House Apportionments. The following...Ch. 12.C - 43-46: Non-House Apportionments. The following...Ch. 12.C - Prob. 46ECh. 12.C - Prob. 47ECh. 12.C - Prob. 48ECh. 12.C - Prob. 49ECh. 12.D - Prob. 1QQCh. 12.D - Prob. 2QQCh. 12.D - 3. If we compare results in presidential elections...Ch. 12.D - 4. In 2010, Republicans in North Carolina received...Ch. 12.D - Prob. 5QQCh. 12.D - Prob. 6QQCh. 12.D - Prob. 7QQCh. 12.D - Prob. 8QQCh. 12.D - Prob. 9QQCh. 12.D - Prob. 10QQCh. 12.D - What is redistricting, and when must it be done?Ch. 12.D - 2. How has the competitiveness of elections for...Ch. 12.D - 3. What is gerrymandering? Where does this term...Ch. 12.D - 4. Briefly describe how the drawing of boundaries...Ch. 12.D - What requirements must be met in drawing district...Ch. 12.D - Briefly describe two ideas for reforming the...Ch. 12.D - In the last election in my home state, 48% of the...Ch. 12.D - Prob. 8ECh. 12.D - Polls show that half voters in our state plan to...Ch. 12.D - Prob. 10ECh. 12.D - Prob. 11ECh. 12.D - Prob. 12ECh. 12.D - Redistricting and House Elections. The 2010 census...Ch. 12.D - Prob. 14ECh. 12.D - Redistricting and House Elections. The 2010 census...Ch. 12.D - Redistricting and House Elections. The 2010 census...Ch. 12.D - Redistricting and House Elections. The 2010 census...Ch. 12.D -
18-23: Average and Extreme Districts. Consider...Ch. 12.D - Prob. 19ECh. 12.D - Prob. 20ECh. 12.D - 18—23: Average and Extreme Districts. Consider the...Ch. 12.D - Average and Extreme Districts. Consider the...Ch. 12.D - Prob. 23ECh. 12.D - Prob. 24ECh. 12.D - Prob. 25ECh. 12.D - Prob. 26ECh. 12.D - Prob. 27ECh. 12.D - Prob. 28ECh. 12.D - 28—29: Drawing Districts Set III. Refer to Figure...Ch. 12.D - 30—32: Drawing Districts Set IV. Refer to Figure...Ch. 12.D - 30—32: Drawing Districts Set IV. Refer to Figure...Ch. 12.D - Prob. 32ECh. 12.D - Prob. 33ECh. 12.D - Prob. 34ECh. 12.D - Prob. 35ECh. 12.D - Prob. 36ECh. 12.D - Prob. 37ECh. 12.D - Prob. 38ECh. 12.D - Prob. 39ECh. 12.D - Prob. 40ECh. 12.D - Prob. 41ECh. 12.D - 42. Redistricting Procedures. Choose a state that...Ch. 12.D - 43. Reform Efforts. Investigate the current status...Ch. 12.D - 44. Mathematical Algorithms for Reform. Search for...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Question 1. Let f: XY and g: Y Z be two functions. Prove that (1) if go f is injective, then f is injective; (2) if go f is surjective, then g is surjective. Question 2. Prove or disprove: (1) The set X = {k € Z} is countable. (2) The set X = {k EZ,nЄN} is countable. (3) The set X = R\Q = {x ER2 countable. Q} (the set of all irrational numbers) is (4) The set X = {p.√2pQ} is countable. (5) The interval X = [0,1] is countable. Question 3. Let X = {f|f: N→ N}, the set of all functions from N to N. Prove that X is uncountable. Extra practice (not to be submitted). Question. Prove the following by induction. (1) For any nЄN, 1+3+5++2n-1 n². (2) For any nЄ N, 1+2+3++ n = n(n+1). Question. Write explicitly a function f: Nx N N which is bijective.arrow_forward3. Suppose P is the orthogonal projection onto a subspace E, and Q is the orthogonal projection onto the orthogonal complement E. (a) The combinations of projections P+Q and PQ correspond to well-known oper- ators. What are they? Justify your answer. (b) Show that P - Q is its own inverse.arrow_forwardAre natural logarithms used in real life ? How ? Can u give me two or three ways we can use them. Thanksarrow_forward
- By using the numbers -5;-3,-0,1;6 and 8 once, find 30arrow_forwardShow that the Laplace equation in Cartesian coordinates: J²u J²u + = 0 მx2 Jy2 can be reduced to the following form in cylindrical polar coordinates: 湯( ди 1 8²u + Or 7,2 მ)2 = 0.arrow_forwardDraw the following graph on the interval πT 5π < x < x≤ 2 2 y = 2 cos(3(x-77)) +3 6+ 5 4- 3 2 1 /2 -π/3 -π/6 Clear All Draw: /6 π/3 π/2 2/3 5/6 x 7/6 4/3 3/2 5/311/6 2 13/67/3 5 Question Help: Video Submit Question Jump to Answerarrow_forward
- Not use ai pleasearrow_forwardSolve the equation. Write the smaller answer first. 2 (x-6)² = 36 x = Α x = Previous Page Next Pagearrow_forwardWrite a quadratic equation in factored form that has solutions of x = 2 and x = = -3/5 ○ a) (x-2)(5x + 3) = 0 ○ b) (x + 2)(3x-5) = 0 O c) (x + 2)(5x -3) = 0 ○ d) (x-2)(3x + 5) = 0arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Discrete Mathematics and Its Applications ( 8th I...MathISBN:9781259676512Author:Kenneth H RosenPublisher:McGraw-Hill EducationMathematics for Elementary Teachers with Activiti...MathISBN:9780134392790Author:Beckmann, SybillaPublisher:PEARSON
- Thinking Mathematically (7th Edition)MathISBN:9780134683713Author:Robert F. BlitzerPublisher:PEARSONDiscrete Mathematics With ApplicationsMathISBN:9781337694193Author:EPP, Susanna S.Publisher:Cengage Learning,Pathways To Math Literacy (looseleaf)MathISBN:9781259985607Author:David Sobecki Professor, Brian A. MercerPublisher:McGraw-Hill Education
Discrete Mathematics and Its Applications ( 8th I...
Math
ISBN:9781259676512
Author:Kenneth H Rosen
Publisher:McGraw-Hill Education
Mathematics for Elementary Teachers with Activiti...
Math
ISBN:9780134392790
Author:Beckmann, Sybilla
Publisher:PEARSON
Thinking Mathematically (7th Edition)
Math
ISBN:9780134683713
Author:Robert F. Blitzer
Publisher:PEARSON
Discrete Mathematics With Applications
Math
ISBN:9781337694193
Author:EPP, Susanna S.
Publisher:Cengage Learning,
Pathways To Math Literacy (looseleaf)
Math
ISBN:9781259985607
Author:David Sobecki Professor, Brian A. Mercer
Publisher:McGraw-Hill Education
Mod-01 Lec-01 Discrete probability distributions (Part 1); Author: nptelhrd;https://www.youtube.com/watch?v=6x1pL9Yov1k;License: Standard YouTube License, CC-BY
Discrete Probability Distributions; Author: Learn Something;https://www.youtube.com/watch?v=m9U4UelWLFs;License: Standard YouTube License, CC-BY
Probability Distribution Functions (PMF, PDF, CDF); Author: zedstatistics;https://www.youtube.com/watch?v=YXLVjCKVP7U;License: Standard YouTube License, CC-BY
Discrete Distributions: Binomial, Poisson and Hypergeometric | Statistics for Data Science; Author: Dr. Bharatendra Rai;https://www.youtube.com/watch?v=lHhyy4JMigg;License: Standard Youtube License