Fundamentals of Engineering Thermodynamics
Fundamentals of Engineering Thermodynamics
8th Edition
ISBN: 9781118412930
Author: Michael J. Moran, Howard N. Shapiro, Daisie D. Boettner, Margaret B. Bailey
Publisher: WILEY
bartleby

Videos

Question
Book Icon
Chapter 12.9, Problem 1E
To determine

The specific heat ratio using molar analysis.

Expert Solution & Answer
Check Mark

Answer to Problem 1E

The specific heat ratio using molar analysis is km=mfH2cp,H2+mfO2cp,O2+mfCOcp,COmfH2cv,H2+mfO2cv,O2+mfCOcv,CO.

Explanation of Solution

Write the expression to calculate the specific heat ratio of mixture km contains H2,O2 and CO using the following relation from molar analysis.

  km=(cp)m(cv)m                                                                                                             (I)

Here, the specific heat at constant pressure of the mixture is (cp)m, the specific heat at constant volume of the mixture is (cv)m.

Write the expression for specific heat at constant pressure of the mixture (cp)m.

  (cp)m=mfH2cp,H2+mfO2cp,O2+mfCOcp,CO                                                     (II)

Here, the mass fraction of hydrogen is mfH2, the mass fraction of oxygen is mfO2, the mass fraction of carbon monoxide is mfCO,  the specific heat capacity at constant pressure of hydrogen at 300 K is cp,H2, the specific heat capacity at constant pressure of oxygen at 300 K is cp,O2, and the specific heat capacity at constant pressure of carbon monoxide at 300 K is cp,CO.

Write the expression for specific heat at constant volume of the mixture (cv)m.

  (cv)m=mfH2cv,H2+mfO2cv,O2+mfCOcv,CO                                                   (III)

Here, the specific heat capacity at constant volume of hydrogen at 300 K is cv,H2,the specific heat capacity at constant volume of oxygen at 300 K is cv,O2, specific heat capacity at constant volume of carbon monoxide at 300 K is cv,CO.

Conclusion:

Substitute Equation (II) and (III) in (I).

  km=mfH2cp,H2+mfO2cp,O2+mfCOcp,COmfH2cv,H2+mfO2cv,O2+mfCOcv,CO

Thus, the specific heat ratio using molar analysis is km=mfH2cp,H2+mfO2cp,O2+mfCOcp,COmfH2cv,H2+mfO2cv,O2+mfCOcv,CO.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
Spur gears Note : Exam is open notes &tables / Answer all questions. Q.1. The press shown for Figure.1 has a rated load of 22 kN. The twin screws have double start Acme threads, a diameter of 50 mm, and a pitch of 6 mm. Coefficients of friction are 0.05 for the threads and 0.08 for the collar bearings. Collar diameters are 90 mm. The gears have an efficiency of 95 percent and a speed ratio of 60:1. A slip clutch, on the motor shaft, prevents overloading. The full-load motor speed is 1720 rev/min. (a) When the motor is turned on, how fast will the press head move? (Vm= , Vser. = ) (5M) (b) What should be the horsepower rating of the motor? (TR=, Tc= Pser. = " Bronze bushings Foot Motor Bearings watt, Pm= watt, Pm= h.p.) (20M) 2['s Fig.1 Worm Collar bearing
Problem 2 (55 pts). We now consider the FEM solution of Problem 1.(a) [5pts] Briefly describe the 4 steps necessary to obtain the approximate solution of thatBVP using the Galerkin FEM. Use the minimum amount of math necessary to supportyour explanations.(b) [20pts] Derive the weak form of the BVP.(c) [10pts] Assuming a mesh of two equal elements and linear shape functions, sketch byhand how you expect the FEM solution to look like. Also sketch the analytical solutionfor comparison. In your sketch, identify the nodal degrees of freedom that the FEMsolution seeks to find.(d) [10pts] By analogy with the elastic rod problem and heat conduction problem considered in class, write down the stiffness matrix and force vector for each of the twoelements considered in (c).(e) [10pts] Assemble the global system of equations, and verbally explain how to solve it.
An aluminum rod of length L = 1m has mass density ρ = 2700 kgm3 andYoung’s modulus E = 70GPa. The rod is fixed at both ends. The exactnatural eigenfrequencies of the rod are ωexactn =πnLqEρfor n=1,2,3,. . . .1. What is the minimum number of linear elements necessary todetermine the fundamental frequency ω1 of the system? Discretizethe rod in that many elements of equal length, assemble the globalsystem of equations KU = ω2MU, and find the fundamentalfrequency ω1. Compute the relative error e1 = (ω1 − ωexact1)/ωexact1.Sketch the fundamental mode of vibration.

Chapter 12 Solutions

Fundamentals of Engineering Thermodynamics

Ch. 12.9 - Prob. 11ECh. 12.9 - Prob. 12ECh. 12.9 - Prob. 13ECh. 12.9 - Prob. 14ECh. 12.9 - Prob. 15ECh. 12.9 - Prob. 16ECh. 12.9 - Prob. 1CUCh. 12.9 - Prob. 12CUCh. 12.9 - Prob. 13CUCh. 12.9 - Prob. 14CUCh. 12.9 - Prob. 15CUCh. 12.9 - 16. The Dalton model assumes that each mixture...Ch. 12.9 - Prob. 17CUCh. 12.9 - Prob. 18CUCh. 12.9 - 19. For the steady-state dehumidification process...Ch. 12.9 - Prob. 20CUCh. 12.9 - Prob. 21CUCh. 12.9 - Prob. 22CUCh. 12.9 - Prob. 23CUCh. 12.9 - Prob. 24CUCh. 12.9 - Prob. 25CUCh. 12.9 - Prob. 26CUCh. 12.9 - Prob. 27CUCh. 12.9 - Prob. 28CUCh. 12.9 - Prob. 29CUCh. 12.9 - Prob. 30CUCh. 12.9 - Prob. 31CUCh. 12.9 - Indicate whether the following statements are true...Ch. 12.9 - Prob. 33CUCh. 12.9 - Prob. 34CUCh. 12.9 - Prob. 35CUCh. 12.9 - Prob. 36CUCh. 12.9 - Prob. 37CUCh. 12.9 - Prob. 38CUCh. 12.9 - Prob. 39CUCh. 12.9 - Prob. 40CUCh. 12.9 - Prob. 41CUCh. 12.9 - Prob. 42CUCh. 12.9 - Prob. 43CUCh. 12.9 - Prob. 44CUCh. 12.9 - Prob. 45CUCh. 12.9 - Prob. 46CUCh. 12.9 - Prob. 47CUCh. 12.9 - Prob. 48CUCh. 12.9 - Prob. 49CUCh. 12.9 - Prob. 50CUCh. 12.9 - Prob. 1PCh. 12.9 - Prob. 2PCh. 12.9 - Prob. 3PCh. 12.9 - Prob. 4PCh. 12.9 - Prob. 5PCh. 12.9 - Prob. 6PCh. 12.9 - Prob. 7PCh. 12.9 - Prob. 8PCh. 12.9 - Prob. 9PCh. 12.9 - Prob. 10PCh. 12.9 - Prob. 11PCh. 12.9 - Prob. 12PCh. 12.9 - Prob. 13PCh. 12.9 - Prob. 14PCh. 12.9 - Prob. 15PCh. 12.9 - Prob. 16PCh. 12.9 - Prob. 17PCh. 12.9 - Prob. 18PCh. 12.9 - Prob. 19PCh. 12.9 - Prob. 20PCh. 12.9 - Prob. 21PCh. 12.9 - Prob. 22PCh. 12.9 - Prob. 23PCh. 12.9 - Prob. 24PCh. 12.9 - Prob. 25PCh. 12.9 - Prob. 26PCh. 12.9 - Prob. 27PCh. 12.9 - Prob. 28PCh. 12.9 - Prob. 29PCh. 12.9 - Prob. 30PCh. 12.9 - Prob. 31PCh. 12.9 - Prob. 32PCh. 12.9 - Prob. 33PCh. 12.9 - Prob. 34PCh. 12.9 - Prob. 35PCh. 12.9 - Argon (Ar), at 300 K, 1 bar with a mass flow rate...Ch. 12.9 - Prob. 37PCh. 12.9 - Prob. 38PCh. 12.9 - Prob. 39PCh. 12.9 - Prob. 41PCh. 12.9 - Prob. 43PCh. 12.9 - 12.45 A water pipe at 5°C runs above ground...Ch. 12.9 - Prob. 46PCh. 12.9 - A lecture hall having a volume of 106 ft3 contains...Ch. 12.9 - Prob. 48PCh. 12.9 - Prob. 49PCh. 12.9 - Prob. 50PCh. 12.9 - Prob. 51PCh. 12.9 - Prob. 52PCh. 12.9 - Prob. 53PCh. 12.9 - Prob. 54PCh. 12.9 - Prob. 55PCh. 12.9 - Prob. 56PCh. 12.9 - Prob. 57PCh. 12.9 - Prob. 58PCh. 12.9 - Prob. 59PCh. 12.9 - Prob. 60PCh. 12.9 - Prob. 61PCh. 12.9 - Prob. 63PCh. 12.9 - A closed, rigid tank having a volume of 1 m3...Ch. 12.9 - Prob. 65PCh. 12.9 - Prob. 66PCh. 12.9 - Moist air enters a control volume operating at...Ch. 12.9 - Prob. 68PCh. 12.9 - A fixed amount of air initially at 52°C, 1 atm,...Ch. 12.9 - Prob. 73PCh. 12.9 - Prob. 74PCh. 12.9 - Prob. 75PCh. 12.9 - Prob. 76PCh. 12.9 - Prob. 80PCh. 12.9 - An air conditioner operating at steady state takes...Ch. 12.9 - Figure P12.82 shows a compressor followed by an...Ch. 12.9 - Prob. 83PCh. 12.9 - Prob. 84PCh. 12.9 - Prob. 87PCh. 12.9 - Prob. 88PCh. 12.9 - Prob. 89PCh. 12.9 - Prob. 91PCh. 12.9 - Air at 35°C, 1 bar, and 10% relative humidity...Ch. 12.9 - Prob. 93PCh. 12.9 - Prob. 95PCh. 12.9 - Prob. 96PCh. 12.9 - At steady state, moist air at 42°C, 1 atm. 30%...Ch. 12.9 - Prob. 98PCh. 12.9 - Prob. 99PCh. 12.9 - Figure P12.100 shows a device for conditioning...Ch. 12.9 - Prob. 101PCh. 12.9 - Prob. 102PCh. 12.9 - Prob. 103PCh. 12.9 - Prob. 104PCh. 12.9 - Liquid water at 120°F enters a cooling tower...Ch. 12.9 - Prob. 107PCh. 12.9 - Prob. 108P
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Extent of Reaction; Author: LearnChemE;https://www.youtube.com/watch?v=__stMf3OLP4;License: Standard Youtube License