
Engineering Mechanics: Statics & Dynamics (14th Edition)
14th Edition
ISBN: 9780133915426
Author: Russell C. Hibbeler
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.8, Problem 183P
To determine
The angular rate of rotation
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
parts e,f,g
Figure 9-6
9-49 An aluminum alloy plate with dimensions 20 cm x 10 cm × 2 cm needs to be cast
with a secondary dendrite arm spacing of 10-2 cm (refer to Figure 9-6). What mold
constant B is required (assume n = 2 )?
Secondary dendrite
arm spacing (cm)
-
10-1
10-2
10-3
10 41
0.1
1
Copper
Zinc alloys
Aluminum alloys
10 100 1,000 10,000 100,000
Solidification time (s)
9-72 Figure 9-29 shows a cylindrical riser attached to a casting. Compare the solidification
times for each casting section and the riser and determine whether the riser will be
effective.
Figure 9-29
Т
3
6
3
8
3
6
Details
A diagram shows the step-block casting. A cylinder of height "7" and diameter "3" is
kept on a platform consisting of 2 steps. The width of the second step of the platform
is labeled as "3". The horizontal length of the first step is labeled as "6." The
horizontal length, width and height of the first step are labeled "6", "8" and "3".
Chapter 12 Solutions
Engineering Mechanics: Statics & Dynamics (14th Edition)
Ch. 12.2 - a. If s = (2t3) m, where t is in seconds,...Ch. 12.2 - Initially, the car travels along a straight road...Ch. 12.2 - A ball is thrown vertically upward with a speed of...Ch. 12.2 - A particle travels along a straight line with a...Ch. 12.2 - A particle travels along a straight line with a...Ch. 12.2 - The position of the particle is given by s = (2t2 ...Ch. 12.2 - A particle travels along a straight line with an...Ch. 12.2 - A particle moves along a straight line such that...Ch. 12.2 - A particle travels along a straight line with a...Ch. 12.2 - Starting from rest, a particle moving in a...
Ch. 12.2 - If a particle has an initial velocity of v0 = 12...Ch. 12.2 - A particle travels along a straight line with a...Ch. 12.2 - A particle travels along a straight line with a...Ch. 12.2 - Prob. 5PCh. 12.2 - Prob. 6PCh. 12.2 - Prob. 7PCh. 12.2 - A particle is moving along a straight line such...Ch. 12.2 - The acceleration of a particle as it moves along a...Ch. 12.2 - A particle moves along a straight line with an...Ch. 12.2 - A particle travels along a straight-line path such...Ch. 12.2 - Traveling with an initial speed of 70 km/h, a car...Ch. 12.2 - Tests reveal that a normal driver takes about 0.75...Ch. 12.2 - The position of a particle along a straight-line...Ch. 12.2 - A particle is moving with a velocity of v0 when s...Ch. 12.2 - A particle is moving along a straight line with an...Ch. 12.2 - Car B is traveling a distanced ahead of car A....Ch. 12.2 - The acceleration of a rocket traveling upward is...Ch. 12.2 - Prob. 19PCh. 12.2 - The velocity of a particle traveling along a...Ch. 12.2 - A freight train travels at v = 60(1 et) ft/s,...Ch. 12.2 - A sandbag is dropped from a balloon which is...Ch. 12.2 - A particle is moving along a straight line such...Ch. 12.2 - Prob. 24PCh. 12.2 - If the effects of atmospheric resistance are...Ch. 12.2 - The acceleration of a particle along a straight...Ch. 12.2 - When a particle falls through the air, its initial...Ch. 12.2 - Prob. 28PCh. 12.2 - Prob. 29PCh. 12.2 - A sphere is fired downwards into a medium with an...Ch. 12.2 - Prob. 31PCh. 12.2 - Prob. 32PCh. 12.2 - Prob. 33PCh. 12.2 - Prob. 34PCh. 12.3 - The particle travels along a straight track such...Ch. 12.3 - Prob. 10FPCh. 12.3 - Prob. 11FPCh. 12.3 - The sports car travels along a straight road such...Ch. 12.3 - The dragster starts from rest and has an...Ch. 12.3 - The dragster starts from rest and has a velocity...Ch. 12.3 - A freight train starts from rest and travels with...Ch. 12.3 - Prob. 36PCh. 12.3 - Prob. 37PCh. 12.3 - Prob. 38PCh. 12.3 - Prob. 39PCh. 12.3 - An airplane starts from rest, travels 5000 ft down...Ch. 12.3 - The elevator starts from rest at the first floor...Ch. 12.3 - The velocity of a car is plotted as shown....Ch. 12.3 - The motion of a jet plane just after landing on a...Ch. 12.3 - Prob. 44PCh. 12.3 - The vt graph for a particle moving through an...Ch. 12.3 - The a-s graph for a rocket moving along a straight...Ch. 12.3 - A two-stage rocket is fired vertically from rest...Ch. 12.3 - The race car starts from rest and travels along a...Ch. 12.3 - The jet car is originally traveling at a velocity...Ch. 12.3 - The car starts from rest at s = 0 and is subjected...Ch. 12.3 - The v-t graph for a train has been experimentally...Ch. 12.3 - A motorcycle starts from rest at s = 0 and travels...Ch. 12.3 - A motorcycle starts from rest at s = 0 and travels...Ch. 12.3 - The v-t graph for the motion of a car as it moves...Ch. 12.3 - An airplane lands on the straight runway,...Ch. 12.3 - Starting from rest at s = 0, a boat travels in a...Ch. 12.3 - Starting from rest at s = 0, a boat travels in a...Ch. 12.3 - A two-stage rocket is fired vertically from rest...Ch. 12.3 - The speed of a train during the first minute has...Ch. 12.3 - A man riding upward in a freight elevator...Ch. 12.3 - Two cars start from rest side by side and travel...Ch. 12.3 - If the position of a particle is defined as s =...Ch. 12.3 - From experimental data, the motion of a jet plane...Ch. 12.3 - The motion of a train is described by the as graph...Ch. 12.3 - The jet plane starts from rest at s = 0 and is...Ch. 12.3 - Prob. 66PCh. 12.3 - Prob. 67PCh. 12.3 - The v-s graph for a test vehicle is shown....Ch. 12.6 - Use the chain-rule and find and in terms of x, ...Ch. 12.6 - Prob. 4PPCh. 12.6 - Prob. 5PPCh. 12.6 - Prob. 6PPCh. 12.6 - Prob. 15FPCh. 12.6 - Prob. 16FPCh. 12.6 - A particle is constrained to travel along the...Ch. 12.6 - Prob. 18FPCh. 12.6 - A particle is traveling along the parabolic path y...Ch. 12.6 - Prob. 20FPCh. 12.6 - The ball is kicked from point A with the initial...Ch. 12.6 - The ball is kicked from point A with the initial...Ch. 12.6 - Prob. 23FPCh. 12.6 - Prob. 24FPCh. 12.6 - A ball is thrown from A. If it is required to...Ch. 12.6 - Prob. 26FPCh. 12.6 - If the velocity of a particle is defined as v(t) =...Ch. 12.6 - The velocity of a particle is v= {3i + (6 2t)j}...Ch. 12.6 - A particle, originally at rest and located at...Ch. 12.6 - The velocity of a particle is given by v ={16t2 i...Ch. 12.6 - The water sprinkler, positioned at the base of a...Ch. 12.6 - Prob. 74PCh. 12.6 - Prob. 75PCh. 12.6 - A particle travels along the curve from A to B in...Ch. 12.6 - The position of a crate sliding down a ramp is...Ch. 12.6 - A rocket is fired from rest at x = 0 and travels...Ch. 12.6 - The particle travels along the path defined by the...Ch. 12.6 - The motorcycle travels with constant speed v0...Ch. 12.6 - A particle travels along the curve from A to B in...Ch. 12.6 - The roller coaster car travels down the helical...Ch. 12.6 - Pegs A and B are restricted to move in the...Ch. 12.6 - The van travels over the hill described by y =...Ch. 12.6 - The flight path of the helicopter as it takes off...Ch. 12.6 - Determine the minimum initial velocity v0 and the...Ch. 12.6 - The catapult is used to launch a ball such that it...Ch. 12.6 - Neglecting the size of the ball, determine the...Ch. 12.6 - The girl at A can throw a ball at vA = 10 m/s....Ch. 12.6 - Show that the girl at A can throw the ball to the...Ch. 12.6 - The ball at A is kicked with a speed vA, = 80ft/s...Ch. 12.6 - The ball at A is kicked such that A = 30. If it...Ch. 12.6 - A golf ball is struck with a velocity of 80 ft/s...Ch. 12.6 - A golf ball is struck with a velocity of 80 ft/s...Ch. 12.6 - The basketball passed through the hoop even...Ch. 12.6 - It is observed that the skier leaves the ramp A at...Ch. 12.6 - It is observed that the skier leaves the ramp A at...Ch. 12.6 - Determine the horizontal velocity vA of a tennis...Ch. 12.6 - The missile at A takes off from rest and rises...Ch. 12.6 - The projectile is launched with a velocity v0....Ch. 12.6 - Prob. 101PCh. 12.6 - Prob. 102PCh. 12.6 - If the dart is thrown with a speed of 10 m/s,...Ch. 12.6 - Prob. 104PCh. 12.6 - Prob. 105PCh. 12.6 - Prob. 106PCh. 12.6 - Prob. 107PCh. 12.6 - Prob. 108PCh. 12.6 - The catapult is used to launch a ball such that it...Ch. 12.7 - a. Determine the acceleration at the instant...Ch. 12.7 - Prob. 27FPCh. 12.7 - Prob. 28FPCh. 12.7 - Prob. 29FPCh. 12.7 - Prob. 30FPCh. 12.7 - Prob. 31FPCh. 12.7 - Prob. 32FPCh. 12.7 - An automobile is traveling on a curve having a...Ch. 12.7 - Determine the maximum constant speed a race car...Ch. 12.7 - A boat has an initial speed of 16 ft/s. If it then...Ch. 12.7 - The position of a particle is defined by r = {4(t ...Ch. 12.7 - The automobile has a speed of 80 ft/s at point A...Ch. 12.7 - The automobile is originally at rest at s = 0. If...Ch. 12.7 - The automobile is originally at rest s = 0. If it...Ch. 12.7 - The two cars A and B travel along the circular...Ch. 12.7 - Prob. 118PCh. 12.7 - The satellite S travels around the earth in a...Ch. 12.7 - The car travels along the circular path such that...Ch. 12.7 - The car passes point A with a speed of 25 m/s...Ch. 12.7 - Prob. 122PCh. 12.7 - The motorcycle is traveling at 1 m/s when it is at...Ch. 12.7 - The box of negligible size is sliding down along a...Ch. 12.7 - The car travels around the circular track having a...Ch. 12.7 - The car travels around the portion of a circular...Ch. 12.7 - Prob. 127PCh. 12.7 - Prob. 128PCh. 12.7 - Prob. 129PCh. 12.7 - Prob. 130PCh. 12.7 - A boat is traveling along a circular path having a...Ch. 12.7 - Prob. 132PCh. 12.7 - Prob. 133PCh. 12.7 - Prob. 134PCh. 12.7 - When t = 0, the train has a speed of 8 m/s, which...Ch. 12.7 - At a given instant the jet plane has a speed of...Ch. 12.7 - The ball is ejected horizontally from the tube...Ch. 12.7 - The motorcycle is traveling at 40 m/s when it is...Ch. 12.7 - Prob. 139PCh. 12.7 - Cars move around the traffic circle which is in...Ch. 12.7 - A package is dropped from the plane which is...Ch. 12.7 - The race car has an initial speed vA = 15 m/s at...Ch. 12.7 - Prob. 143PCh. 12.7 - Prob. 144PCh. 12.7 - Particles A and B are traveling counter-clockwise...Ch. 12.7 - Prob. 146PCh. 12.7 - Prob. 147PCh. 12.7 - The jet plane is traveling with a constant speed...Ch. 12.7 - Prob. 149PCh. 12.7 - The train passes point A with a speed of 30 m/s...Ch. 12.7 - The particle travels with a constant speed of 300...Ch. 12.7 - Prob. 152PCh. 12.7 - Prob. 153PCh. 12.7 - If the speed of the crate at A is 15 ft/s, which...Ch. 12.8 - The car has a speed of 55 ft/s. Determine the...Ch. 12.8 - The platform is rotating about the vertical axis...Ch. 12.8 - Peg P is driven by the fork link OA along the...Ch. 12.8 - Prob. 36FPCh. 12.8 - Prob. 37FPCh. 12.8 - Prob. 38FPCh. 12.8 - A particle is moving along a circular path having...Ch. 12.8 - For a short time a rocket travels up and to the...Ch. 12.8 - A particle moves along a path defined by polar...Ch. 12.8 - An airplane is flying in a straight line with a...Ch. 12.8 - The small washer is sliding down the cord OA. When...Ch. 12.8 - A radar gun at O rotates with the angular velocity...Ch. 12.8 - If a particle moves along a path such that r = (2...Ch. 12.8 - Prob. 162PCh. 12.8 - Prob. 163PCh. 12.8 - The car travels along the circular curve of radius...Ch. 12.8 - The time rate of change of acceleration is...Ch. 12.8 - A particle is moving along a circular path having...Ch. 12.8 - The slotted link is pinned at O, and as a result...Ch. 12.8 - For a short time the bucket of the backhoe traces...Ch. 12.8 - Prob. 169PCh. 12.8 - A particle moves in the x y plane such that its...Ch. 12.8 - At the instant shown, the man is twirling a hose...Ch. 12.8 - The rod OA rotates clockwise with a constant...Ch. 12.8 - Determine the magnitude of the acceleration of the...Ch. 12.8 - A double collar C is pin connected together such...Ch. 12.8 - A block moves outward along the slot in the...Ch. 12.8 - The car travels around the circular track with a...Ch. 12.8 - The car travels around the circular track such...Ch. 12.8 - Prob. 178PCh. 12.8 - A horse on the merry-go-round moves according to...Ch. 12.8 - A horse on the merry-go-round moves according to...Ch. 12.8 - Prob. 181PCh. 12.8 - Prob. 182PCh. 12.8 - Prob. 183PCh. 12.8 - A truck is traveling along the horizontal circular...Ch. 12.8 - The rod OA rotates counterclockwise with a...Ch. 12.8 - Determine the magnitude of the acceleration of the...Ch. 12.8 - Prob. 187PCh. 12.8 - Prob. 188PCh. 12.8 - Prob. 189PCh. 12.8 - Prob. 190PCh. 12.8 - Prob. 191PCh. 12.8 - For a short time the arm of the robot is extending...Ch. 12.8 - The double collar C is pin connected together such...Ch. 12.8 - The double collar C is pin connected together such...Ch. 12.10 - Determine the velocity of block D if end A of the...Ch. 12.10 - Prob. 40FPCh. 12.10 - Prob. 41FPCh. 12.10 - Prob. 42FPCh. 12.10 - Prob. 43FPCh. 12.10 - Prob. 44FPCh. 12.10 - Prob. 45FPCh. 12.10 - Prob. 46FPCh. 12.10 - The boats A and B travel with constant speeds of...Ch. 12.10 - At the instant shown, cars A and B are traveling...Ch. 12.10 - If the end of the cable at A is pulled down with a...Ch. 12.10 - The motor at C pulls in the cable with an...Ch. 12.10 - The pulley arrangement shown is designed for...Ch. 12.10 - If the end of the cable at A is pulled down with a...Ch. 12.10 - Determine the displacement of the log if the truck...Ch. 12.10 - Determine the constant speed at which the cable at...Ch. 12.10 - Starting from rest, the cable can be wound onto...Ch. 12.10 - If the end A of the cable is moving at vA = 3 m/s,...Ch. 12.10 - Determine the time needed for the load at B to...Ch. 12.10 - The cable at A is being drawn toward the motor at...Ch. 12.10 - If block A of the pulley system is moving downward...Ch. 12.10 - Determine the speed of the block at B.Ch. 12.10 - Determine the speed of block A if the end of the...Ch. 12.10 - The motor draws in the cable at C with a constant...Ch. 12.10 - The cord is attached to the pm at C and passes...Ch. 12.10 - The 16-ft-long cord is attached to the pin at C...Ch. 12.10 - The roller at A is moving with a velocity of A = 4...Ch. 12.10 - The girl at C stands near the edge of the pier and...Ch. 12.10 - Prob. 213PCh. 12.10 - At the instant shown, the car at A is traveling at...Ch. 12.10 - The motor draws in the cord at B with an...Ch. 12.10 - If block B is moving down with a velocity vB and...Ch. 12.10 - The crate C is being lifted by moving the roller...Ch. 12.10 - Two planes, A and B, are flying at the same...Ch. 12.10 - Prob. 219PCh. 12.10 - The boat can travel with a speed of 16 km/h in...Ch. 12.10 - Two boats leave the pier P at the same time and...Ch. 12.10 - Prob. 222PCh. 12.10 - Prob. 223PCh. 12.10 - At the instant shown, car A has a speed of 20...Ch. 12.10 - Cars A and B are traveling around the circular...Ch. 12.10 - Prob. 226PCh. 12.10 - At the instant shown, cars A and B are traveling...Ch. 12.10 - Prob. 228PCh. 12.10 - Prob. 229PCh. 12.10 - Prob. 230PCh. 12.10 - Prob. 231PCh. 12.10 - Prob. 232PCh. 12.10 - The football player at A throws the ball in the...Ch. 12.10 - At a given instant the football player at A throws...Ch. 12.10 - Prob. 235PCh. 12.10 - Prob. 1CPCh. 12.10 - Prob. 1RPCh. 12.10 - Prob. 2RPCh. 12.10 - Prob. 3RPCh. 12.10 - Prob. 4RPCh. 12.10 - Prob. 5RPCh. 12.10 - Prob. 6RPCh. 12.10 - Prob. 7RPCh. 12.10 - Prob. 8RPCh. 12.10 - Prob. 9RPCh. 12.10 - Prob. 10RPCh. 12.10 - Prob. 11RP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 6/94 Determine the minimum coefficient of static friction for which the bar can be in static equilibrium in the config- uration shown. The bar is uniform and the fixed peg at C is small. Neglect friction at B. A L PROBLEM 6/94 B L 22arrow_forwardQ2. For the following situation, estimate the minimum required compressive strength of 20/40 proppant. If intermediate-strength proppant is used, estimate the permeability of the proppant pack: Formation depth: 10,000 ft Overburden density: 165lbm/ft3 Poison’s ratio: 0.25 Biot constant: 0.7 Reservoir pressure: 6,500 psi Production drawdown: 2,000 and 4,000 psiarrow_forwardA 3-in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that at the instant shown. point A has a velocity of 4.875 in./sin./s and an acceleration of 15.50 in./s2in./s2 , both directed to the right, determine the accelerations of points A, B, and C of the drums. The cord is wound around the 3 inch radius drum. Point B is at the bottom of the 5 inch radius drum. Point A is at the bottom of the 3 inch radius drum. Point C is on the right edge of the 5 inch radius drum. The accelerations of point B is______ in./s2 . The accelerations of point A is ______ in./s2 ______ ⦨ °. at what angle/direction The accelerations of point C is______ in./s2 ______ ⦪ °. at what angle/direction?arrow_forward
- A total volume of mud is 1,000 bbls that has a mud weight of 9.1 ppg. Calculate the volumefractions of water, Bentonite, and the weight of Bentonite used. Density of powder Bentonite is 156 lbm/ft3arrow_forwardA 3-in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that at the instant shown. point A has a velocity of 4.875 in./sin./s and an acceleration of 15.50 in./s2in./s2 , both directed to the right, determine the accelerations of points A, B, and C of the drums. The cord is wound around the 3 inch radius drum. Point B is at the bottom of the 5 inch radius drum. Point A is at the bottom of the 3 inch radius drum. Point C is on the right edge of the 5 inch radius drum. The accelerations of point B is ______ in./s2 The accelerations of point A is ______ in./s2 _____⦨ °. The accelerations of point C is _______ in./s2 ____ ⦪ °.arrow_forwardThe average heat transfer coefficent for airflow over an odd shaped body is to be determined by mass transfer measurements and using the Chilton-Colburn analogy btwn heat and mass transfer. The experiemnt is conducted by blowing dry air at 1 atm at a free-stream velocity of 2 m/s over a body covered with a layer of naphthalene. The surface area of the body is .75 m^2, and it is observed that 100 g of maphthalene has sublimated in 45 min. During the experiemnt, both the body and the air were kep at 25oC, at which the vapor pressure and mass diffusivity of naphthalene are 11 Pa and Dab=0.61*10^-5 m^2/s respectively. Determine the heat transfer coefficent under the same flow conditions over the same geometry.arrow_forward
- Auto Controls Design a PID controller for thefollowing system so that the modified system satisfies the followingspecifications : 1. settling time ,ts = 1.96 s and % Overshoot Mp = 70.7 % Assume a non-dominant pole at s = -15 to solve the problem The plot the compensated andThen plot the uncompensated system in MATLAB. what can you see from the plot ? what is your observation ?arrow_forwardAuto Controls The figure is a schematic diagram of an aircraft elevator control system. The input to the systemin the deflection angle of the control lever , and the output is the elevator angle phi.show that for each angle theta of the control lever ,there is a corresponding elevator angle phi. Then find Y(s)/theta(s) and simplify the resulting transfer function . Also note from the diagram that y and phi is relatedarrow_forwardFresh water is planned to be pumped in a certain pipe at constant pumping rate of 6.5 gpm. If water density and viscosity are 8.34 ppg and 1.0 cp, what is the minimum pipe inside diameter that make the fluid flow behave as turbulent flow?arrow_forward
- USE MATLAB ONLY provide typed code Turbomachienery . GIven: vx = 185 m/s, flow angle = 60 degrees, R = 0.5, U = 150 m/s, b2 = -a3, a2 = -b3 Find: velocity triangle , a. magnitude of abs vel leaving rotor (m/s) b. flow absolute angles (a1, a2, a3) 3. flow rel angles (b2, b3) d. specific work done e. use code to draw vel. diagram Use this code for plot % plots Velocity Tri. in Ch4 function plotveltri(al1,al2,al3,b2,b3) S1L = [0 1]; V1x = [0 0]; V1s = [0 1*tand(al3)]; S2L = [2 3]; V2x = [0 0]; V2s = [0 1*tand(al2)]; W2s = [0 1*tand(b2)]; U2x = [3 3]; U2y = [1*tand(b2) 1*tand(al2)]; S3L = [4 5]; V3x = [0 0]; V3r = [0 1*tand(al3)]; W3r = [0 1*tand(b3)]; U3x = [5 5]; U3y = [1*tand(b3) 1*tand(al3)]; plot(S1L,V1x,'k',S1L,V1s,'r',... S2L,V2x,'k',S2L,V2s,'r',S2L,W2s,'b',U2x,U2y,'g',... S3L,V3x,'k',S3L,V3r,'r',S3L,W3r,'b',U3x,U3y,'g',...... 'LineWidth',2,'MarkerSize',10),... axis([-1 6 -4 4]), ... title('Velocity Triangle'), ... xlabel('x'),ylarrow_forwardConsider a 12 cm internal diameter, 14 m long circular duct whose interior surface is wet. The duct is to be dried by forcing dry air at 1 atm and 15oC throught it at an average velocity of 3m/s. The duct passes through a chilled roo, and it remains at an average temp of 15oC at all time. Determine the mass transfer coeeficient in the duct.arrow_forwardConsider a 5m by 5m wet concret patio with an average water film thickness of .2mm. Now wind at 50 km/h is blowing over the surface. If the air is at 1 atm, 15oC and 35 percent relative humidity, determine how long it will take for the patio to completely dry.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY

Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press

Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON

Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education

Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY

Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning

Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY