EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
14th Edition
ISBN: 9780133976588
Author: HIBBELER
Publisher: PEARSON CO
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
thumb_up100%
Chapter 12.6, Problem 83P
If the link moves with a constant speed of 10 m/s, determine the magnitude of the velocity and acceleration of peg A when x = 1 m.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Determine the acceleration at the instant shown.
v = 2 m/s
i = 3 m/s
=
The x- and y- motions of guides A and B with right-angle slots control the
curvilinear motion of the connecting pin P, which slides in both slots. For a short interval
the motions are governed by x = 20 + t² and y 15-¹t³, where x and y are in
millimeters and t in seconds. Calculate the magnitudes of the velocity v and acceleration
a of the pin for t = 2 s. sketch the direction of the path and indicate its curvature for this
instant.
4
6
Ans. v= 2.24 mm/s, a = 2.06 mm/s²
B
Jerry
An automobile accelerates uniformly from a constant speed of 60 Kph to a speed of 90 Kph in 5 seconds. Determine the acceleration?
Chapter 12 Solutions
EP ENGR.MECH.:DYNAMICS-REV.MOD.MAS.ACC.
Ch. 12.2 - a. If s = (2t3) m, where t is in seconds,...Ch. 12.2 - Initially, the car travels along a straight road...Ch. 12.2 - Determine the time of flight when it returns to...Ch. 12.2 - A particle travels along a straight line with a...Ch. 12.2 - A particle travels along a straight line with a...Ch. 12.2 - Determine the time when the velocity of the...Ch. 12.2 - A particle travels along a straight line with an...Ch. 12.2 - A particle moves along a straight line such that...Ch. 12.2 - Determine the acceleration of the particle at s =...Ch. 12.2 - What is the particles velocity when t = 6 s, and...
Ch. 12.2 - If a particle has an initial velocity of v0 = 12...Ch. 12.2 - When t = 1 s, the particle is located 10m to the...Ch. 12.2 - When s =4ft, v = 3ft/s and when s = 10ft, v = 8...Ch. 12.2 - If s = 0 when t = 0, determine the particles...Ch. 12.2 - Determine the position of the particle when t = 6...Ch. 12.2 - Determine the average velocity, the average speed,...Ch. 12.2 - Determine (a) the displacement of the particle...Ch. 12.2 - If s = 1 m and v = 2 m/s when t = 0, determine the...Ch. 12.2 - Determine the particles velocity when s = 2 m, if...Ch. 12.2 - Then in another 5 s it moves from SB to SC = 6 m....Ch. 12.2 - How long will it take to reach a speed of 120...Ch. 12.2 - It takes about 3 s for a driver having 0.1%...Ch. 12.2 - Determine the total distance traveled when t = 10...Ch. 12.2 - If it is subjected to a deceleration of a = kv3,...Ch. 12.2 - Determine how far it travels before it stops. How...Ch. 12.2 - It takes the driver of car A 0.75 s to react (this...Ch. 12.2 - Determine the time needed for the rocket to reach...Ch. 12.2 - Afterwards it travels with a constant velocity for...Ch. 12.2 - If s = 4 ft when t = 0, determine the position of...Ch. 12.2 - Determine the distance traveled in three seconds,...Ch. 12.2 - If the bag is released with the same upward...Ch. 12.2 - If v = 20 m/s when s = 0 and t = 0, determine the...Ch. 12.2 - If v = 0, s = 1 m when t = 0, determine the...Ch. 12.2 - If the body is released from rest at a very high...Ch. 12.2 - At t 0,s 1 m and v = 10 m/s. When t 9 s,...Ch. 12.2 - Initially the particle falls from rest.Ch. 12.2 - Determine the distance between them when t = 4 s...Ch. 12.2 - Determine the height from the ground and the time...Ch. 12.2 - A sphere is fired downwards into a medium with an...Ch. 12.2 - If s = 0 when t = 0, determine the position and...Ch. 12.2 - Determine the elapsed time t 2v0/g from the...Ch. 12.2 - Neglecting air resistance, this acceleration is...Ch. 12.2 - Accounting for the variation of gravitational...Ch. 12.3 - Construct the v t graph for the same time...Ch. 12.3 - Construct the s t and a t graphs during the same...Ch. 12.3 - Construct the a s graph for the same interval.Ch. 12.3 - The sports car travels along a straight road such...Ch. 12.3 - Construct the v t graph for the time interval 0 ...Ch. 12.3 - Construct the s t graph during the time interval...Ch. 12.3 - A freight train starts from rest and travels with...Ch. 12.3 - The s-t graph for a train has been experimentally...Ch. 12.3 - Rocket A accelerates vertically at 20 m/s2 for 12...Ch. 12.3 - Construct the v-t and a-t graphs for the time...Ch. 12.3 - If the position of a particle is defined by s = [2...Ch. 12.3 - It then climbs in a straight line with a uniform...Ch. 12.3 - It can accelerate at 5 ft/s2 and then decelerate...Ch. 12.3 - Determine the total distance the car moves until...Ch. 12.3 - Determine the time t when the jet plane stops....Ch. 12.3 - The acceleration and deceleration that occur are...Ch. 12.3 - Draw the st and at graphs for the particle. When t...Ch. 12.3 - If the rocket starts at s = 0 when v = 0,...Ch. 12.3 - After 30 s the first stage, A, burns out and the...Ch. 12.3 - The flat part of the graph is caused by shifting...Ch. 12.3 - Determine the cars maximum velocity and the time t...Ch. 12.3 - Draw the v-s graph and determine the time needed...Ch. 12.3 - From the data, construct the s-t and a-t graphs...Ch. 12.3 - Determine the total distance the motorcycle...Ch. 12.3 - Determine the motorcycles acceleration and...Ch. 12.3 - Draw the s-t and a-t graphs. Also determine the...Ch. 12.3 - If it is subjected to the decelerations shown,...Ch. 12.3 - Determine the boats speed when s = 50 ft, 100 ft,...Ch. 12.3 - Construct the v-s graph.Ch. 12.3 - After 15 s the first stage A burns out and the...Ch. 12.3 - The speed of a train during the first minute has...Ch. 12.3 - If the elevator maintains a constant upward speed...Ch. 12.3 - Car A accelerates at 4 m/s2 for 10 s and then...Ch. 12.3 - If the position of a particle is defined as s =...Ch. 12.3 - Construct the st and at graphs for the motion....Ch. 12.3 - Draw the vs graph if v = 0 at s = 0.Ch. 12.3 - Determine the speed of the plane when it has...Ch. 12.3 - Construct the s-t and a-s graphs. Also, determine...Ch. 12.3 - Construct the a-s graph.Ch. 12.3 - Determine its acceleration when s = 100 m and when...Ch. 12.6 - Use the chain-rule and find and in terms of x, ...Ch. 12.6 - The particle travels from A to B. Identify the...Ch. 12.6 - The particle travels from A to B. Identify the...Ch. 12.6 - The particle travels from A to B. Identify the...Ch. 12.6 - If the x and y components of a particle's velocity...Ch. 12.6 - If its position along the x axis is x = (8t) m,...Ch. 12.6 - If x = (4t4) m, where t is in seconds, determine...Ch. 12.6 - A particle travels 3long a straight line path y =...Ch. 12.6 - If x = 8 m, vx = 8 m/s, and ax = 4 m/s2 when t = 2...Ch. 12.6 - If the box has x components of velocity and...Ch. 12.6 - Determine the maximum height h it reaches.Ch. 12.6 - The ball is kicked from point A with the initial...Ch. 12.6 - Determine the speed at which the basketball at A...Ch. 12.6 - Determine the range R.Ch. 12.6 - A ball is thrown from A. If it is required to...Ch. 12.6 - Determine the range R where it strikes the ground...Ch. 12.6 - If the velocity of a particle is defined as v(t) =...Ch. 12.6 - If r = 0 when t = 0, determine the displacement of...Ch. 12.6 - Determine the particles position (x, y, z) at t =...Ch. 12.6 - If the particle is at the origin when t = 0,...Ch. 12.6 - Determine the point B(x, y) where the water...Ch. 12.6 - Determine the particles position (x, y, z) when t...Ch. 12.6 - It takes 4 s for it to go from B to C and then 3 s...Ch. 12.6 - It takes 8 s for it to go from B to C and then 10...Ch. 12.6 - Determine the magnitude of the crates velocity and...Ch. 12.6 - If the x component of acceleration is...Ch. 12.6 - If the component of velocity along the x axis is...Ch. 12.6 - Determine the x and y components of its velocity...Ch. 12.6 - If it takes 3 s for it to go from A to C,...Ch. 12.6 - Determine the magnitudes of its velocity and...Ch. 12.6 - If the link moves with a constant speed of 10 m/s,...Ch. 12.6 - If it has a constant speed of 75 ft/s, determine...Ch. 12.6 - Determine the distance the helicopter is from...Ch. 12.6 - Determine the minimum initial velocity v0 and the...Ch. 12.6 - If it takes 1.5 s to travel from A to B, determine...Ch. 12.6 - Neglecting the size of the ball, determine the...Ch. 12.6 - The girl at A can throw a ball at vA = 10 m/s....Ch. 12.6 - If vA = 10 m/s, determine the range R if this...Ch. 12.6 - Determine the point (x, y) where it strikes the...Ch. 12.6 - If it strikes the ground at B having coordinates x...Ch. 12.6 - Determine the distance d to where it will land.Ch. 12.6 - Determine the speed at which it strikes the ground...Ch. 12.6 - Neglecting the size of the ball, determine the...Ch. 12.6 - If he strikes the ground at B, determine his...Ch. 12.6 - If he strikes the ground at B, determine his...Ch. 12.6 - Determine the horizontal velocity vA of a tennis...Ch. 12.6 - If the acceleration varies with time as shown,...Ch. 12.6 - Determine the range R, the maximum height h...Ch. 12.6 - Determine the maximum and minimum speed at which...Ch. 12.6 - Also, what is the corresponding angle A at which...Ch. 12.6 - Also, what is the corresponding angle A at which...Ch. 12.6 - Note that the first dart must be thrown at C( D)...Ch. 12.6 - Determine the time for a particle of water leaving...Ch. 12.6 - The snowmobile is traveling at 10 m/s when it...Ch. 12.6 - Water flows from the hose at vA = 80 ft/s.Ch. 12.6 - When the ball is directly overhead of player B he...Ch. 12.6 - If it takes 1.5 s to travel from A to B, determine...Ch. 12.7 - a. Determine the acceleration at the instant...Ch. 12.7 - Determine the magnitude of its acceleration when t...Ch. 12.7 - Determine the magnitude of its acceleration when s...Ch. 12.7 - If the car decelerates uniformly along the curved...Ch. 12.7 - Determine the direction of the crates velocity,...Ch. 12.7 - If the motorcycle has a deceleration of at =...Ch. 12.7 - The car travels up the hill with a speed of v =...Ch. 12.7 - If the acceleration of the automobile is 5 ft/s2,...Ch. 12.7 - Determine the maximum constant speed a race car...Ch. 12.7 - If it then increases its speed along a circular...Ch. 12.7 - Determine the speed of the particle and its normal...Ch. 12.7 - Determine the radius of curvature of the path at...Ch. 12.7 - If its speed is increased by v = (0.05t2) ft/s2,...Ch. 12.7 - If it then starts to increase its speed at v =...Ch. 12.7 - If they are at the positions shown when t = 0,...Ch. 12.7 - At the instant shown, A has a speed of 60ft/sand...Ch. 12.7 - If the acceleration is 2.5 m/s2, determine the...Ch. 12.7 - Determine the magnitudes of its velocity and...Ch. 12.7 - Determine the magnitude of the cars acceleration...Ch. 12.7 - If the car passes point A with a speed of 20m/s...Ch. 12.7 - The motorcycle is traveling at 1 m/s when it is at...Ch. 12.7 - Determine the magnitude of the acceleration of the...Ch. 12.7 - Determine the magnitudes of its velocity and...Ch. 12.7 - Determine the magnitudes of its velocity and...Ch. 12.7 - Determine the rate of increase in the train's...Ch. 12.7 - If it increases its speed along the circular track...Ch. 12.7 - Determine the time when the magnitude of...Ch. 12.7 - If its speed at t = 0 is 15 ft/s and is increasing...Ch. 12.7 - Determine the magnitude of the boat's acceleration...Ch. 12.7 - Determine the magnitudes of his velocity and...Ch. 12.7 - If it is initially traveling with a speed of 10...Ch. 12.7 - Determine the magnitude of its acceleration when...Ch. 12.7 - Determine the magnitude of the acceleration of the...Ch. 12.7 - Determine the rate of increase in the planes...Ch. 12.7 - Find the equation of the path, y = f (x), and then...Ch. 12.7 - The motorcycle is traveling at 40 m/s when it is...Ch. 12.7 - If the speed limit is posted at 60 km/h, determine...Ch. 12.7 - Prob. 140PCh. 12.7 - Determine the normal and tangential components of...Ch. 12.7 - Take =150 m.Ch. 12.7 - The motorcycle travels along the elliptical track...Ch. 12.7 - The motorcycle travels along the elliptical track...Ch. 12.7 - If at the instant shown the speed of A begins to...Ch. 12.7 - If the speed of B is increasing by (at)B = 4m/s2,...Ch. 12.7 - Also, specify the direction of flight, measured...Ch. 12.7 - Determine the magnitude of the acceleration of the...Ch. 12.7 - The train passes point B with a speed of 20 m/s...Ch. 12.7 - Determine the magnitude of the acceleration of the...Ch. 12.7 - Determine the particles acceleration when it is...Ch. 12.7 - When t = 8 s, determine the coordinate direction...Ch. 12.7 - Prob. 153PCh. 12.7 - If the speed of the crate at A is 15 ft/s, which...Ch. 12.8 - Determine the angular velocity of the radial line...Ch. 12.8 - A ball rolls outward along the radial groove so...Ch. 12.8 - Peg P is driven by the fork link OA along the...Ch. 12.8 - Peg P is driven by the forked link OA along the...Ch. 12.8 - Determine the magnitude of the velocity of the...Ch. 12.8 - At the instant = 45, the athlete is running with...Ch. 12.8 - A particle is moving along a circular path having...Ch. 12.8 - Determine the radial and transverse components of...Ch. 12.8 - Determine the components of its velocity and...Ch. 12.8 - If the propeller has a diameter of 6 ft and is...Ch. 12.8 - Express the velocity and acceleration of the...Ch. 12.8 - Determine the magnitudes of velocity and...Ch. 12.8 - If a particle moves along a path such that r = (2...Ch. 12.8 - If a particle moves along a path such that r =...Ch. 12.8 - At the instant shown, its angular rate of rotation...Ch. 12.8 - Determine the angular rate of rotation of the...Ch. 12.8 - Calculate this vector, a, in terms of its...Ch. 12.8 - such that its position as a function of time is...Ch. 12.8 - Determine the radial and transverse components of...Ch. 12.8 - Determine the magnitudes of the velocity and...Ch. 12.8 - Determine the velocity and acceleration of the...Ch. 12.8 - Determine the radial and transverse components of...Ch. 12.8 - If it is assumed that the hose lies in a...Ch. 12.8 - Two pin-connected slider blocks, located at B....Ch. 12.8 - Determine the magnitude of the acceleration of the...Ch. 12.8 - If the geometry of the fixed rod for a short...Ch. 12.8 - The platform rotates at a constant rate of 6...Ch. 12.8 - Determine the cars radial and transverse...Ch. 12.8 - Determine the cars radial and transverse...Ch. 12.8 - If it maintains a constant speed of v = 35 ft/s,...Ch. 12.8 - Determine the cylindrical components of the...Ch. 12.8 - Determine the maximum and minimum magnitudes of...Ch. 12.8 - The peg is constrained to move in the slots of the...Ch. 12.8 - When = 30, the angular velocity and angular...Ch. 12.8 - Determine the angular rate of rotation of the...Ch. 12.8 - A truck is traveling along the horizontal circular...Ch. 12.8 - Two pin-connected slider blocks, located at B,...Ch. 12.8 - Determine the magnitude of the acceleration of the...Ch. 12.8 - The searchlight on the boat anchored 2000 ft from...Ch. 12.8 - If the car in Prob.12-187 is accelerating at 15...Ch. 12.8 - If = 4 rad/s (constant), determine the radial and...Ch. 12.8 - if the particle has an angular acceleration = 5...Ch. 12.8 - If = (0.5t)rad, where t is in seconds, determine...Ch. 12.8 - Determine the magnitudes of the velocity and...Ch. 12.8 - When t = 0, = 0. Use Simpson's rule with n = 50...Ch. 12.8 - The double collar C is pin connected together such...Ch. 12.10 - Determine the velocity of block D if end A of the...Ch. 12.10 - Determine the velocity of block A if end B of the...Ch. 12.10 - Determine the velocity of block A if end B of the...Ch. 12.10 - Determine the velocity of block A if end F of the...Ch. 12.10 - Determine the velocity of car A if point P on the...Ch. 12.10 - Determine the velocity of cylinder B if cylinder A...Ch. 12.10 - Determine the velocity of car B relative to car A.Ch. 12.10 - Determine the magnitude and direction of the...Ch. 12.10 - Determine the distance between them when t = 4 s.Ch. 12.10 - If B is accelerating at 1200 km/h2 while A...Ch. 12.10 - If the end of the cable at A is pulled down with a...Ch. 12.10 - The motor at D draws in its cable at aD = 5 m/s2....Ch. 12.10 - If BC remains fixed while the plunger P is pushed...Ch. 12.10 - If the end of the cable at A is pulled down with a...Ch. 12.10 - Determine the displacement of the log if the truck...Ch. 12.10 - Determine the constant speed at which the cable at...Ch. 12.10 - Determine the time needed to lift the load 7 m.Ch. 12.10 - If the end A of the cable is moving at vA = 3 m/s,...Ch. 12.10 - Determine the time needed for the load at B to...Ch. 12.10 - Determine the velocity of the block.Ch. 12.10 - If block A of the pulley system is moving downward...Ch. 12.10 - Determine the speed of the block at B.Ch. 12.10 - Determine the speed of block A if the end of the...Ch. 12.10 - The motor draws in the cable at D with a constant...Ch. 12.10 - The pulley at A is attached to the smooth collar...Ch. 12.10 - When sB = 6ft. the end of the cord at B is pulled...Ch. 12.10 - Determine the velocity and acceleration of block B...Ch. 12.10 - Determine how fast the boat approaches the pier at...Ch. 12.10 - If the hydraulic cylinder H draws in rod BC at 2...Ch. 12.10 - The car at B is traveling at 18.5 m/s along the...Ch. 12.10 - When sA = 1.5 m, vB = 6 m/s. Determine the...Ch. 12.10 - If block B is moving down with a velocity vB and...Ch. 12.10 - Determine the velocity and acceleration of the...Ch. 12.10 - If their velocities are vA = 500km/h and vB =...Ch. 12.10 - If B is increasing its speed by 1200mi/h2, while A...Ch. 12.10 - The point of destination is located along the...Ch. 12.10 - If vA = 40ft/s and vB = 30 ft/s. determine the...Ch. 12.10 - An instrument in the car indicates that the wind...Ch. 12.10 - If vA = 10m/s and vB = 15m/s, determine the...Ch. 12.10 - At the same instant, car B is decelerating at 250...Ch. 12.10 - At the instant shown, A has a speed of 90ft/sand...Ch. 12.10 - If raindrops fall vertically at 7 km/h in still...Ch. 12.10 - If B is increasing its velocity by 2 m/s2, while A...Ch. 12.10 - If A is increasing its speed at 4 m/s2, whereas...Ch. 12.10 - Compute the terminal (constant) velocity vr of the...Ch. 12.10 - He wishes to cross the 40-ft-wide river to point...Ch. 12.10 - Determine the magnitude and direction of the...Ch. 12.10 - At the instant the ball is thrown, the player is...Ch. 12.10 - At the instant the ball is thrown, the player is...Ch. 12.10 - Determine the constant speed at which the player...Ch. 12.10 - At this same instant car B travels along the...Ch. 12.10 - If you measured the time it takes for the...Ch. 12.10 - Determine its maximum acceleration and maximum...Ch. 12.10 - Originally s0 = 0.Ch. 12.10 - A projectile, initially at the origin, moves along...Ch. 12.10 - Determine the acceleration when t = 2.5 s, 10 s,...Ch. 12.10 - If it takes 3 s to go from A to B, and then 5 s to...Ch. 12.10 - From a videotape, it was observed that a player...Ch. 12.10 - The truck travels in a circular path having a...Ch. 12.10 - If the car starts from rest when = 0, determine...Ch. 12.10 - Determine the magnitude of the particles...Ch. 12.10 - Determine the time needed for the load at B to...Ch. 12.10 - If their velocities are vA = 600 km/h and vB = 500...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Collars A and B slide along the fixed right-angle rods and are connected by a cord of length L= 7.1 m. Determine the acceleration of collar B when y = 2.8 m if collar A is given a constant upward velocity vĄ = 2.42 m/s. The acceleration of B is positive if to the right, negative if to the left. A L Answer: ag = m/s?arrow_forwardThex-and y-motions of guides A and Bwith right-angle slots control the curvilinear mation of the connecting pin P. which slides in bath slots. For a short interval, the motions are governed byx- 19+0.47 and y - 19 - 0.90P. wherexand y are in millimeters and tis in seconds. Calculate the magnitudes of the velocity v and acceleration a of the pin for t-23s. Sketch the direction of the path and indicate its curvature for this instant. Calculate the x- and y-components of the acceleration. Answers: mm/s? 0.94 a,- -12.42 mm/s? Calculate the x- and y-components of the velocity. Answers: 2.162 mm/s Vy" -14.283 mm/sarrow_forwardCollars A and B slide along the fixed right-angle rods and are connected by a cord of length L = 3.2 m. Determine the acceleration of collar B when y = 1.3 m if collar A is given a constant upward velocity vA = 2.93 m/s. The acceleration of B is positive if to the right, negative if to the left. Answer: ag = i m/s?arrow_forward
- The y-coordinate of a particle in curvilinear motion is given by y - 4 - 3t, where y is in inches and t is in seconds. Also, the particle has an acceleration in the x-direction given by a, - 12t in. /sec. If the ve- locity of the particle in the x-direction is 4 in./sec when t- 0, calculate the magnitudes of the velocity v and acceleration a of the particle when t 1 sec. Match each item to a choice: Velocity: Acceleration: Choices E28.1 in/s2 # 13.45 in/s # 34 6 in/s # 15.4 in/s # 24.1 in/s2 # 22.8 in/s # 26.8 in/s2arrow_forwardUnder the action of force P, the constant acceleration of block B is 6.2 ft/sec² up the incline. For the instant when the velocity of B is 3.1 ft/sec up the incline, determine the velocity of B relative to A (positive if up the slope, negative if down), the acceleration of B relative to A (positive if up the slope, negative if down), and the absolute velocity of point C (positive if up the slope, negative if down) of the cable. B 25° Answers: VB/A = AB/A = Vc = i i ft/sec ft/sec² ft/secarrow_forwardUnder the action of force P, the constant acceleration of block B is 7.0 ft/sec² up the incline. For the instant when the velocity of B is 4.0 ft/sec up the incline, determine the velocity of B relative to A (positive if up the slope, negative if down), the acceleration of Brelative to A (positive it up the slope, negative if down), and the absolute velocity of point C (positive if up the slope, negative if down) of the cable. Answers: VRA AAA- ve 20 ft/sec ft/sec² ft/secarrow_forward
- Current Attempt in Progress The y-coordinate of a particle in curvilinear motion is given by y = 6.2t3 - 3.0t, where y is in inches and t is in seconds. Also, the particle has an acceleration in the x-direction given by ax = 8.5t in./sec². If the velocity of the particle in the x-direction is 12.9 in./sec when t = 0, calculate the magnitudes of the velocity v and acceleration a of the particle when t = 3.6 sec. Construct v and a in your solution. Answers: When t = 3.6 sec, V = a = i in./sec in./sec² Save for Later Using multiple attempts will impact your score. 10% score reduction after attempt 1 Attempts: 0 of 3 used Submit Answerarrow_forwardThe y-coordinate of a particle in curvilinear motion is given by y = 41³ – 31, where y is in inches and t is in seconds. Also, the particle has an acceleration in the x-direction given by a̟ = 12t in./sec². If the ve- locity of the particle in the x-direction is 4 in./sec when t = 0, calculate the magnitudes of the velocity v and acceleration a of the particle when t = l sec.arrow_forwardQ1. If the speed of the motorcycle is v = V600 – 0.5s? where s is in meters measured from A, determine its tangential velocity, tangential acceleration and normal acceleration when it reaches B. Clearly draw free body diagram and mention velocity and acceleration vectors along with their magnitudes and angles with positive t-axis. Where r=60m and is 30 degrees.arrow_forward
- The end rollers of bar AB are constrained to the slot shown. If roller A has a downward velocity of 3.42 m/s and this speed is constant over a small motion interval, determine the tangential acceleration (ag), (positive if to the right, negative if to the left) of roller B as it passes the topmost position. The value of R is 0.43 m. -30.7 Answer: (ag); = m/s? 1.5Rarrow_forwardYour answer is partially correct. A particle which moves with curvilinear motion has coordinates in millimeters which vary with the time t in seconds according to x = 1.5t2 - 5.2t and y = 2.3t2 - t/5.8. Determine the magnitudes of the velocity v and acceleration a and the angles which these vectors make with the x-axis when t= 1.4 s. Answers: When t = 1.4 s, mm/s, O, = i V = 5.51757 46.4108 4.3512 mm/s?, e, a = 46.4108arrow_forwardAt a given instant, the gear rack on the left has a velocity of 4.5 ft/s and is accelerating at 1.8 ft/s2 while the gear rack on the right has a velocity of 4.8 ft/s and is accelerating at 2.5 ft/s2. Determine the acceleration of point A. 0.25 ftarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Dynamics - Lesson 1: Introduction and Constant Acceleration Equations; Author: Jeff Hanson;https://www.youtube.com/watch?v=7aMiZ3b0Ieg;License: Standard YouTube License, CC-BY