EBK THERMODYNAMICS: AN ENGINEERING APPR
8th Edition
ISBN: 9780100257054
Author: CENGEL
Publisher: YUZU
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.6, Problem 41P
Derive expressions for (a) Δu, (b) Δh, and (c) Δs for a gas whose equation of state is P(v − a) = RT for an isothermal process.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
asap please
Q2
(a)
A polytropic process is defined as PV" = C , where n is polytropic index and C
is a constant. Derive the equation for a boundary work of an ideal gas
undergoing a polytropic process at the isothermal condition.
Derive expressions for (a) delta u (b) delta h (c) delta s for a gas whose equation of state is P(v-a) = RT for an isothermal process
Chapter 12 Solutions
EBK THERMODYNAMICS: AN ENGINEERING APPR
Ch. 12.6 - What is the difference between partial...Ch. 12.6 - Consider a function z(x, y) and its partial...Ch. 12.6 - Prob. 3PCh. 12.6 - Conside the function z(x, y), its partial...Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - Consider air at 350 K and 0.75 m3/kg. Using Eq....Ch. 12.6 - 12–7 Nitrogen gas at 400 K and 300 kPa behaves as...Ch. 12.6 - Nitrogen gas at 800 R and 50 psia behaves as an...Ch. 12.6 - Prob. 9PCh. 12.6 - Using the equation of state P(v a) = RT, verify...
Ch. 12.6 - Prob. 11PCh. 12.6 - Verify the validity of the last Maxwell relation...Ch. 12.6 - Prob. 14PCh. 12.6 - Prob. 15PCh. 12.6 - Prob. 16PCh. 12.6 - Prob. 17PCh. 12.6 - Prove that (PT)=kk1(PT)v.Ch. 12.6 - Prob. 19PCh. 12.6 - Prob. 20PCh. 12.6 - Using the Clapeyron equation, estimate the...Ch. 12.6 - Prob. 22PCh. 12.6 - Prob. 23PCh. 12.6 - Determine the hfg of refrigerant-134a at 10F on...Ch. 12.6 - Prob. 25PCh. 12.6 - Prob. 26PCh. 12.6 - Prob. 27PCh. 12.6 - Prob. 28PCh. 12.6 - Prob. 29PCh. 12.6 - 12–30 Show that =
Ch. 12.6 - Prob. 31PCh. 12.6 - Prob. 32PCh. 12.6 - Prob. 33PCh. 12.6 - Prob. 34PCh. 12.6 - Prob. 35PCh. 12.6 - Prob. 36PCh. 12.6 - Determine the change in the internal energy of...Ch. 12.6 - Prob. 38PCh. 12.6 - Determine the change in the entropy of helium, in...Ch. 12.6 - Prob. 40PCh. 12.6 - Derive expressions for (a) u, (b) h, and (c) s for...Ch. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Show that cpcv=T(PT)V(VT)P.Ch. 12.6 - Prob. 44PCh. 12.6 - Prob. 45PCh. 12.6 - Derive an expression for the specific heat...Ch. 12.6 - Derive an expression for the isothermal...Ch. 12.6 - Show that = ( P/ T)v.Ch. 12.6 - Prob. 49PCh. 12.6 - Prob. 50PCh. 12.6 - Show that the enthalpy of an ideal gas is a...Ch. 12.6 - Prob. 52PCh. 12.6 - Prob. 53PCh. 12.6 - The pressure of a fluid always decreases during an...Ch. 12.6 - Does the Joule-Thomson coefficient of a substance...Ch. 12.6 - Will the temperature of helium change if it is...Ch. 12.6 - Prob. 59PCh. 12.6 - Prob. 60PCh. 12.6 - 12–61E Estimate the Joule-Thomson-coefficient of...Ch. 12.6 - Prob. 62PCh. 12.6 - Consider a gas whose equation of state is P(v a)...Ch. 12.6 - Prob. 64PCh. 12.6 - On the generalized enthalpy departure chart, the...Ch. 12.6 - Why is the generalized enthalpy departure chart...Ch. 12.6 - Prob. 67PCh. 12.6 - Prob. 68PCh. 12.6 - Prob. 69PCh. 12.6 - Prob. 70PCh. 12.6 - Prob. 71PCh. 12.6 - Prob. 72PCh. 12.6 - Prob. 73PCh. 12.6 - Prob. 75PCh. 12.6 - Propane is compressed isothermally by a...Ch. 12.6 - Prob. 78PCh. 12.6 - Prob. 80RPCh. 12.6 - Starting with the relation dh = T ds + vdP, show...Ch. 12.6 - Show that cv=T(vT)s(PT)vandcp=T(PT)s(vT)PCh. 12.6 - Temperature and pressure may be defined as...Ch. 12.6 - For ideal gases, the development of the...Ch. 12.6 - Prob. 85RPCh. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - For a homogeneous (single-phase) simple pure...Ch. 12.6 - Prob. 88RPCh. 12.6 - Estimate the cpof nitrogen at 300 kPa and 400 K,...Ch. 12.6 - Prob. 90RPCh. 12.6 - Prob. 91RPCh. 12.6 - An adiabatic 0.2-m3 storage tank that is initially...Ch. 12.6 - Prob. 93RPCh. 12.6 - Methane is to be adiabatically and reversibly...Ch. 12.6 - Prob. 96RPCh. 12.6 - Prob. 98RPCh. 12.6 - Prob. 99RPCh. 12.6 - Prob. 100FEPCh. 12.6 - Consider the liquidvapor saturation curve of a...Ch. 12.6 - Prob. 102FEPCh. 12.6 - For a gas whose equation of state is P(v b) = RT,...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Answer for J and Karrow_forwardDerive an expression for the specific heat difference of a substance whose equation of state is: P=[(RT)/(v-b)]-[a/(v*(v+b)*T1/2)] Where a and b are empirical constantsarrow_forwardDerive a relation for the volume expansivity β and the isothermal compressibility κ (a) for an ideal gas and (b) for a gas whose equation of state is P(v - a) = RT and (c) calculate β and κ for nitrogen at T=175K, v = 0.00375 m3 /kg, and a = 0.00138 m3 /kg and compare the results obtained from ideal gas law and from P(v - a) = RT.arrow_forward
- PLEASE HELP ANSWER THIS THERMODYNAMICS PRACTICE QUESTIONarrow_forwardThe simplest equation of state for liquid water is the so-called stiffened-gas equation of state in the form c(y – 1)T - II P = (9.129) where y = 4 – 7, II = 4 × 10° Pa, and c = 4200 kJkg¯'K!. (a) Determine the volumetric thermal expansion of this liquid at T = 100°C and P = 1 MPa.(b) De- termine the isothermal compressibility of this liquid at T = 100°C and P = 1 MPa.arrow_forward2. Consider a metal rod with the equation of state L- Lo = Lo +a(T YA %3D Here Lo, Y, A, To, and a are constants,T is the temperature, L is the length, and F is the tension. Work is given by dW a) Using the first law and the expression for dU in terms of it partial derivatives with respect to T and L, show that for this system -FdL. (). -). G). (4). - se, b) By differentiating the first of these equations with respect to L and the second with respect to T show that ), -r(器). =F-T ƏT c) Using the above result and the equation of state, find an expression for (0/aL). Then, assuming that C. the heat capacity at constant length is a Constant. find an expression for the internal energy, U, as a function of T and L.arrow_forward
- The van der Wails equation of state is p ± (v-b = RT, where p is pressure, v is specific volume, T is temperature and R is characteristic gas constant The SI unit of a isarrow_forwardUsing the Redlich–Kwong equations of state develop a compression factor and molar volume chart for carbon dioxide over the temperature range -40°C to +220°C and a pressure range of 1 to 400 bar. the output should be the following graphs: (a) Z vs P (b) P vs V.arrow_forwardThe isentropic equation of state for air as an ideal gas, givesarrow_forward
- What is the physical significance of the two constants that appear in the van der Waals equation of state? On what basis are they determined?arrow_forwardConsider the processes shown below for a monatomic ideal gas. Find the work done in each of the processes AB, BC, AD, and DC. Hint for (a) WAB=WAB=CorrectJJWBC=WBC=IncorrectJJWAD=WAD=IncorrectJJWDC=WDC=CorrectJJ Find the change in the internal energy in processes AB and BC. Hint for (b) ΔEAB=ΔEAB=IncorrectJJΔEBC=ΔEBC=IncorrectJJ Find the total heat added in ABC and ADC processes. Hint for (c) QABC=QABC=IncorrectJJQADC=QADC=IncorrectJarrow_forwardOne kilogram of water (V1 = 1003 cm3.kg−1) in a piston/cylinder device at 25°C and 1 bar is compressed in a mechanically reversible, isothermal process to 1500 bar. Determine Q, W, ΔU, ΔH, and ΔS given that β = 250 × 10−6 K−1 and κ = 45 × 10−6 bar−1. A satisfactory assumption is that V is constant at its arithmetic average value.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Thermodynamics - Chapter 3 - Pure substances; Author: Engineering Deciphered;https://www.youtube.com/watch?v=bTMQtj13yu8;License: Standard YouTube License, CC-BY