EBK NONLINEAR DYNAMICS AND CHAOS WITH S
EBK NONLINEAR DYNAMICS AND CHAOS WITH S
2nd Edition
ISBN: 9780429680151
Author: STROGATZ
Publisher: VST
bartleby

Videos

Question
Book Icon
Chapter 12.5, Problem 3E
Interpretation Introduction

Interpretation:

Consider the system (Ueda attractor) with equation x¨ + kx˙ + x3= Bcos(t), with k = 0.1, =12. Show numerically that system has a strange attractor, and plot its Poincaré section.

Concept Introduction:

  • Use(Ueda attractor) with system equation.

  • Plot its Poincaré section using Mathematica.

Blurred answer
Students have asked these similar questions
Please solve number 2.
Construct a know-show table of the proposition: For each integer n, n is even if and only if 4 divides n^2
In Problems 1 and 2 find the eigenfunctions and the equation that defines the eigenvalues for the given boundary-value problem. Use a CAS to approximate the first four eigenvalues A1, A2, A3, and A4. Give the eigenfunctions corresponding to these approximations. 1. y" + Ay = 0, y'(0) = 0, y(1) + y'(1) = 0
Knowledge Booster
Background pattern image
Advanced Math
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, advanced-math and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Algebra & Trigonometry with Analytic Geometry
Algebra
ISBN:9781133382119
Author:Swokowski
Publisher:Cengage
Text book image
Elementary Linear Algebra (MindTap Course List)
Algebra
ISBN:9781305658004
Author:Ron Larson
Publisher:Cengage Learning
Text book image
College Algebra
Algebra
ISBN:9781337282291
Author:Ron Larson
Publisher:Cengage Learning
Text book image
PREALGEBRA
Algebra
ISBN:9781938168994
Author:OpenStax
Publisher:OpenStax
Text book image
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
Finite State Machine (Finite Automata); Author: Neso Academy;https://www.youtube.com/watch?v=Qa6csfkK7_I;License: Standard YouTube License, CC-BY
Finite State Machine (Prerequisites); Author: Neso Academy;https://www.youtube.com/watch?v=TpIBUeyOuv8;License: Standard YouTube License, CC-BY