
Electrical Motor Controls for Integrated Systems
5th Edition
ISBN: 9780826912268
Author: Gary Rockis;Glen A. Mazur
Publisher: American Technical Publishers
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.4, Problem 1CP
To determine
To explain: The process occurs to the load that is energized when the two wire control device is used, and during the power loss, and reapplied.
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
Q: Design of AM system
1- Draw the block diagram for AM transmitter
2- Draw the output waveform of transmitter and what is the
device measure the output?
3- Draw the spectrum frequency for the output of transmitter
4- Why we use the modulation?
Do
The following circuit is at steady state for t<0. At t=0 sec, the switch is open. Let R₁ =14 ohms, R₂=14
ohms, R3-4 ohms, C₁-1 F, Vx-16 V and Ix-7 A. Find Vc1 (0.8 sec) and voltage across resistor R3 = v(1.4 sec),
as follows:
Vc1(0) in volts=
Vc1(00) in volts=
Rth in ohms=
Vc1(t-0.8 sec) in volts=
v(t-1.4 sec) in volts=
Vx
w
t=0
The relative tolerance for this problem is 10 %.
+
www
R₂
Vit
R3
+
Vc1(t)
C₁
For the circuit shown, the switch opens at t=0 sec. Find i(t=1.5) value as follows.
Let R1-12 ohm, R₂-8 ohm, L=0.6 H, V≤1-10 V and V2-8 V, and determine:
i(0) =
A
A
i(∞0) =
Rth
=
i(1.5 sec)
Ω
A
R₁
L
i(t)
VS2
R2
w
The relative tolerance for this problem is 9 %.
+
V S1
Chapter 12 Solutions
Electrical Motor Controls for Integrated Systems
Ch. 12.1 - Prob. 1CPCh. 12.1 - Prob. 2CPCh. 12.2 - Prob. 1CPCh. 12.2 - Prob. 2CPCh. 12.2 - Prob. 3CPCh. 12.2 - Prob. 4CPCh. 12.3 - Prob. 1CPCh. 12.3 - Prob. 2CPCh. 12.3 - Prob. 3CPCh. 12.3 - Prob. 4CP
Ch. 12.3 - Prob. 5CPCh. 12.3 - Prob. 6CPCh. 12.4 - Prob. 1CPCh. 12.4 - Prob. 2CPCh. 12.4 - Prob. 3CPCh. 12.4 - Prob. 4CPCh. 12.4 - Prob. 5CPCh. 12.4 - Prob. 6CPCh. 12.5 - Prob. 1CPCh. 12.5 - Prob. 2CPCh. 12.5 - Prob. 3CPCh. 12.5 - Prob. 4CPCh. 12.6 - Prob. 1CPCh. 12.6 - Prob. 2CPCh. 12.7 - Prob. 1CPCh. 12.7 - Prob. 2CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- You must have noticed that, when a major appliance is turned on (such as an AC unit, garbage disposal, etc.), your house lights dim momentarily. This is the effect of the RL circuit formed by the inductance and resistance of the transmission line and the loads (light bulbs, appliance, etc.) In fact, even a single straight wire has inductance. The inductance (and the resistance) of a long transmission line can be problematic if the system is not properly designed. The voltage on a power transmission line is alternating current but the effect of transmission line can be simulated by a DC circuit as shown below, where R=0.005 2 /km and L=0.04 H/km representing the resistance and inductance of the transmission line per km relationship that is with the ration: L-8 R. In the circuit, Right =160 represents light bulb resistances, R₁ = 7 represents the resistance of a 'major appliance', and the switch indicates when the appliance is turn on. Alice, a newly hired engineer, needs to determine…arrow_forwardFor the circuit shown, let Let R₁-3 ohms, R2-7 ohms, C₁-2 F, VX-20 V and Ix-1 A. Calculate the capacitor voltages, as shows, at time t= (-1.3) sec and at t=1.9 sec. In particular find: V(0) = V(∞) = Rth V(t=-1.3 sec) in volts- V(t-1.9 sec) in volts- C1 HH +V(t) = - (V) (V) (S2) (V) 3 (V) Vx +1 R1 t=0 The relative tolerance for this problem is 9 %. R₂arrow_forwardIn the circuit below, the switch moves from position 1 to position 2 at t=0. Select the closest waveform which represents the inductor current: 2 R 2R V₁ t=0 0 t=0 (a) (d) t=0 (b) (e) 0 0 t=0 (c) t=0 요 (f) Note: choices are listed randomly; may not alphabetically ordered. (given during job interview question, with permission) waveform c waveform a O waveform d waveform e waveform b ○ waveform f t=0 Rarrow_forward
- Let R1-8 ohms, R₂-5 ohms, L₁-2 H, Vx=10 V, in the circuit shown, to calculate the inductor current at time t= (0.6 sec) and at t= 2 sec, as follows: i(0) = 1(00) - Rth= = i(0.6 sec) = i(2 sec) = R₁ (A) (A) (N) Vx 1=0 The relative tolerance for this problem is 9 %. (A) (A) R2 ell 4₁arrow_forwardThe following circuit is at steady state for t<0. At t=0 sec, the switch opens. Let R₁=102, R₂-12 2, R3=6 2, R4-6, C=0.9 F and V₂-14 V, and find V(t) at t =2.206 sec, as follows: V(0) = (V) V(∞0) = RTh = V(2.206) = (V) (Ω) (V) {To avoid errors, and meet allowed tolerance, carry-out your intermediate numerical values as much as possible than round only the entered values to 3 significant digits} R₁ w V (+ R₂ ww + C EV(t) R3 The relative tolerance for this problem is 10 %. Question Help: Written Example I R4 www 2=0arrow_forwardPM Mon Apr 14 la800803.us.archive.org Chapter 5 Problems 199 5-8 5-9 carry generator of Fig. 5-5. Derive the two-level Boolean expression for the output carry Cs shown in the look-ahead How many unused input combinations are there in a BCD adder? 5-10 Design a combinational circuit that generated the 9's complement of a BCD digit. 5-11 Construct a 4-digit BCD adder-subtractor using four BCD adders, as shown in Fig. 5-6, and four 9's complement circuits from Problem 5-10. Use block diagrams for each compo- nent, showing only inputs and outputs. 5-12 It is necessary to design a decimal adder for two digits represented in the excess-3 code. Show that the correction after adding the two digits with a 4-bit binary adder is as fol- lows: (a) The output carry is equal to the carry from the binary adder. = (b) If the output carry 1, then add 0011. (c) If the output carry = 0, then add 1101. Construct the decimal adder with two 4-bit adders and an inverter. 5-13 Design a combinational circuit…arrow_forward
- For the circuit shown, assume the initial capacitor voltage is V(0-) = -8 V. Then at t=0, the switch closes. Find the time at which Vc(t)-8 V. Let R₁-12 S2, C1-8 F and V₂-16 V The voltage Vc(∞ )= Time-constant T= The time at which Vc(t)-8 V ist = (V) (sec) (sec) + R1 C₁ + Vct) The relative tolerance for this problem is 10 %.arrow_forward13. Find i(t) for t > 0 in the following circuitarrow_forwardCalculate the Capacitor Voltage for t > 0 assuming the switch has been open for long time.arrow_forward
- 14. Find i(t) for t > 0 in the following circuit Note: the current source is only ON for t > 0. So, it would be an open circuit for t < 0arrow_forward10. Find v(t) for t > 0 in the following circuit. Note: the current source is only ON for t > 0. So, it would be an open circuit for t < 0arrow_forward3. Calculate the Capacitor Voltage for the t 0 for the following circuit. 302 292 12 V 4 V 3 F 2arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,

Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON

Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning

Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education

Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education

Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON

Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,