![Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)](https://www.bartleby.com/isbn_cover_images/9780137394524/9780137394524_largeCoverImage.gif)
Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)
7th Edition
ISBN: 9780137394524
Author: R. Nagle, Edward Saff
Publisher: PEARSON+
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.3, Problem 5E
To determine
The given system is almost linear near the origin and type and stability of critical point at the origin.
Expert Solution & Answer
![Check Mark](/static/check-mark.png)
Want to see the full answer?
Check out a sample textbook solution![Blurred answer](/static/blurred-answer.jpg)
Students have asked these similar questions
iid
1. The CLT provides an approximate sampling distribution for the arithmetic average Ỹ of a
random sample Y₁, . . ., Yn f(y). The parameters of the approximate sampling distribution
depend on the mean and variance of the underlying random variables (i.e., the population
mean and variance). The approximation can be written to emphasize this, using the expec-
tation and variance of one of the random variables in the sample instead of the parameters
μ, 02:
YNEY,
· (1
(EY,, varyi
n
For the following population distributions f, write the approximate distribution of the sample
mean.
(a) Exponential with rate ẞ: f(y) = ß exp{−ßy}
1
(b) Chi-square with degrees of freedom: f(y) = ( 4 ) 2 y = exp { — ½/ }
г(
(c) Poisson with rate λ: P(Y = y) = exp(-\}
>
y!
y²
2. Let Y₁,……., Y be a random sample with common mean μ and common variance σ². Use the
CLT to write an expression approximating the CDF P(Ỹ ≤ x) in terms of µ, σ² and n, and
the standard normal CDF Fz(·).
3. We'd like to know the first time when the population reaches 7000 people. First, graph the
function from part (a) on your calculator or Desmos. In the same window, graph the line y =
7000. Notice that you will need to adjust your window so that you can see values as big as
7000! Investigate the intersection of the two graphs. (This video shows you how to find the
intersection on your calculator, or in Desmos just hover the cursor over the point.) At what
value t> 0 does the line intersect with your exponential function? Round your answer to two
decimal places. (You don't need to show work for this part.) (2 points)
Chapter 12 Solutions
Pearson eText Fundamentals of Differential Equations with Boundary Value Problems -- Instant Access (Pearson+)
Ch. 12.2 - In Problem 16, classify the critical point at the...Ch. 12.2 - Prob. 2ECh. 12.2 - Prob. 3ECh. 12.2 - Prob. 4ECh. 12.2 - Prob. 5ECh. 12.2 - Prob. 6ECh. 12.2 - Prob. 7ECh. 12.2 - Prob. 8ECh. 12.2 - Prob. 9ECh. 12.2 - In Problem 712, find and classify the critical...
Ch. 12.2 - In Problem 712, find and classify the critical...Ch. 12.2 - In Problem 712, find and classify the critical...Ch. 12.2 - Prob. 13ECh. 12.2 - In Problems 13-20, classify the critical point at...Ch. 12.2 - Prob. 15ECh. 12.2 - Prob. 16ECh. 12.2 - Prob. 17ECh. 12.2 - In Problems 13-20, classify the critical point at...Ch. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - Show that when the system x(t)=ax+by+p,...Ch. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Prob. 24ECh. 12.2 - Prob. 25ECh. 12.2 - Show when the roots of the characteristic equation...Ch. 12.2 - Prob. 27ECh. 12.3 - In Problems 1 -8, show that the given system is...Ch. 12.3 - Prob. 2ECh. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - Prob. 5ECh. 12.3 - Prob. 6ECh. 12.3 - Prob. 7ECh. 12.3 - Prob. 8ECh. 12.3 - In Problems 9 -12, find all the critical points...Ch. 12.3 - Prob. 10ECh. 12.3 - Prob. 11ECh. 12.3 - In Problems 9 -12, find all the critical points...Ch. 12.3 - In Problems 13-16, convert the second-order...Ch. 12.3 - In Problems 13-16, convert the second-order...Ch. 12.3 - Prob. 15ECh. 12.3 - Prob. 16ECh. 12.3 - Prob. 17ECh. 12.3 - Prob. 18ECh. 12.3 - Prob. 19ECh. 12.3 - Prob. 20ECh. 12.3 - van der Pols Equation. a. Show that van der Pols...Ch. 12.3 - Consider the system dxdt=(+)x+y, dydt=x+(+)y,...Ch. 12.3 - Prob. 23ECh. 12.3 - Show that coexistence occurs in the competing...Ch. 12.3 - When one of the populations in a competing species...Ch. 12.4 - Prob. 1ECh. 12.4 - Prob. 2ECh. 12.4 - Prob. 3ECh. 12.4 - Prob. 4ECh. 12.4 - Prob. 5ECh. 12.4 - Prob. 6ECh. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Prob. 9ECh. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Prob. 12ECh. 12.4 - Prob. 13ECh. 12.4 - Prob. 14ECh. 12.4 - Prob. 15ECh. 12.4 - Prob. 16ECh. 12.4 - Prob. 17ECh. 12.4 - Prob. 18ECh. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - Prob. 4ECh. 12.5 - In Problems 1-8, use Lyapunovs direct method to...Ch. 12.5 - Prob. 6ECh. 12.5 - Prob. 7ECh. 12.5 - Prob. 8ECh. 12.5 - In problem 9-14, use Lyapunovs direct method to...Ch. 12.5 - In problem 9-14, use Lyapunovs direct method to...Ch. 12.5 - Prob. 11ECh. 12.5 - Prob. 12ECh. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.5 - Prove that the zero solution for a conservative...Ch. 12.6 - Semistable Limit cycle. For the system...Ch. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - In Problems 512, either by hand or using a...Ch. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - In Problems 5-12, either by hand or using computer...Ch. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - In Problems 5-12, either by hand or using computer...Ch. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - Prob. 15ECh. 12.6 - In Problems 13-18, show that the given system or...Ch. 12.6 - Prob. 17ECh. 12.6 - Prob. 18ECh. 12.6 - Prob. 19ECh. 12.6 - Prob. 20ECh. 12.6 - Prob. 21ECh. 12.6 - Prob. 22ECh. 12.6 - Prob. 23ECh. 12.6 - Prob. 24ECh. 12.6 - Prob. 25ECh. 12.6 - Prob. 26ECh. 12.6 - Prob. 27ECh. 12.6 - Prob. 28ECh. 12.7 - Prob. 1ECh. 12.7 - Prob. 2ECh. 12.7 - Prob. 3ECh. 12.7 - Prob. 4ECh. 12.7 - Prob. 5ECh. 12.7 - Prob. 6ECh. 12.7 - Prob. 9ECh. 12.7 - Prob. 10ECh. 12.7 - Prob. 11ECh. 12.7 - Prob. 12ECh. 12.7 - Prob. 13ECh. 12.7 - Prob. 14ECh. 12.7 - Prob. 15ECh. 12.7 - Prob. 16ECh. 12.7 - Prob. 17ECh. 12.7 - Prob. 18ECh. 12.8 - Calculate the Jacobian eigenvalues at the critical...Ch. 12.8 - Prob. 2ECh. 12.8 - Prob. 3ECh. 12.8 - Prob. 4ECh. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - Prob. 2RPCh. 12.RP - Prob. 3RPCh. 12.RP - Prob. 4RPCh. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - In Problems 1-6, find all the critical points for...Ch. 12.RP - Prob. 7RPCh. 12.RP - In Problems 7 and 8, use the potential plane to...Ch. 12.RP - In Problems 9-12, use Lyapunovs direct method to...Ch. 12.RP - Prob. 10RPCh. 12.RP - In Problems 9-12, use Lyapunovs direct method to...Ch. 12.RP - Prob. 12RPCh. 12.RP - Prob. 13RPCh. 12.RP - In Problem 13 and 14, sketch the phase plane...Ch. 12.RP - In Problems 15 and 16, determine whether the given...Ch. 12.RP - Prob. 16RPCh. 12.RP - In Problems 17 and 18, determine the stability of...Ch. 12.RP - In Problems 17 and 18, determine the stability of...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, subject and related others by exploring similar questions and additional content below.Similar questions
- Suppose the planet of Tattooine currently has a population of 6500 people and an annual growth rate of 0.35%. Use this information for all the problems below. 1. Find an exponential function f(t) that gives the population of Tattooine t years from now. (3 points)arrow_forwardA house was valued at $95,000 in the year 1988. The value appreciated to $170,000 by the year 2007. A) If the value is growing exponentially, what was the annual growth rate between 1988 and 2007? Round the growth rate to 4 decimal places. r = B) What is the correct answer to part A written in percentage form? r = 3 %.arrow_forwardB G R + K Match each equation with a graph above - 3(0.9)* 1 a. green (G) 3(1.5)* b. black (K) 3(0.73)* c. blue (B) d. red (R) I ✪ 4(1.21)* - 3(1.21)* e. orange (O)arrow_forward
- Suppose the planet of Tattooine currently has a population of 6500 people and an annual growth rate of 0.35%. Use this information for all the problems below.arrow_forwardConsider the weighted voting system [16: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forwardNo chatgpt pls willarrow_forward
- Consider the weighted voting system [9: 7, 4, 1]Find the Shapley-Shubik power distribution of this weighted voting system.List the power for each player as a fraction:P1: P2: P3:arrow_forwardConsider the weighted voting system [11: 7, 4, 1]Find the Shapley-Shubik power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3:arrow_forwardConsider the weighted voting system [18: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forward
- Consider the weighted voting system [16: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forwardConsider the weighted voting system [18: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1 = P2 = P3 = P4 =arrow_forwardConsider the weighted voting system [18: 15, 8, 3, 1]Find the Banzhaf power distribution of this weighted voting system.List the power for each player as a fraction: P1: P2: P3: P4:arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Linear Algebra: A Modern IntroductionAlgebraISBN:9781285463247Author:David PoolePublisher:Cengage LearningAlgebra for College StudentsAlgebraISBN:9781285195780Author:Jerome E. Kaufmann, Karen L. SchwittersPublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285463247/9781285463247_smallCoverImage.gif)
Linear Algebra: A Modern Introduction
Algebra
ISBN:9781285463247
Author:David Poole
Publisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781285195780/9781285195780_smallCoverImage.gif)
Algebra for College Students
Algebra
ISBN:9781285195780
Author:Jerome E. Kaufmann, Karen L. Schwitters
Publisher:Cengage Learning
Lecture 46: Eigenvalues & Eigenvectors; Author: IIT Kharagpur July 2018;https://www.youtube.com/watch?v=h5urBuE4Xhg;License: Standard YouTube License, CC-BY
What is an Eigenvector?; Author: LeiosOS;https://www.youtube.com/watch?v=ue3yoeZvt8E;License: Standard YouTube License, CC-BY