Thomas' Calculus - MyMathLab Integrated Review
14th Edition
ISBN: 9780134786223
Author: Hass
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Question
Chapter 12.3, Problem 26E
To determine
Find the horizontal and vertical component of the force w.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Let y(t) represent your retirement account balance, in dollars, after t years. Each year the account earns
7% interest, and you deposit 8% of your annual income. Your current annual income is $34000, but it is
growing at a continuous rate of 2% per year.
Write the differential equation modeling this situation.
dy
dt
8:37
▬▬▬▬▬▬▬▬▬
Ο
Graph of f
The figure shows the graph of a periodic function
f in the xy-plane. What is the frequency of f?
0.5
B
2
C
3
D
8
3 of 6
^
Oli
Back
Next
apclassroom.collegeboard.org
2. The growth of bacteria in food products makes it necessary to time-date some products (such as milk) so that
they will be sold and consumed before the bacteria count is too high. Suppose for a certain product that the number
of bacteria present is given by
f(t)=5000.1
Under certain storage conditions, where t is time in days after packing of the product and the value of f(t) is in
millions.
The solution to word problems should always be given in a complete sentence, with appropriate units, in the
context of the problem.
(a) If the product cannot be safely eaten after the bacteria count reaches 3000 million, how long will this take?
(b) If t=0 corresponds to January 1, what date should be placed on the product?
Chapter 12 Solutions
Thomas' Calculus - MyMathLab Integrated Review
Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...
Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - Prob. 12ECh. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - In Exercises 1–16, give a geometric description of...Ch. 12.1 - Prob. 16ECh. 12.1 - In Exercises 17–24, describe the sets of points in...Ch. 12.1 - In Exercises 17–24, describe the sets of points in...Ch. 12.1 - In Exercises 17–24, describe the sets of points in...Ch. 12.1 - In Exercises 17–24, describe the sets of points in...Ch. 12.1 - In Exercises 17–24, describe the sets of points in...Ch. 12.1 - In Exercises 17–24, describe the sets of points in...Ch. 12.1 - In Exercises 17–24, describe the sets of points in...Ch. 12.1 - In Exercises 17–24, describe the sets of points in...Ch. 12.1 - In Exercises 25–30, find the distance between...Ch. 12.1 - In Exercises 25–30, find the distance between...Ch. 12.1 - In Exercises 25–30, find the distance between...Ch. 12.1 - In Exercises 25–30, find the distance between...Ch. 12.1 - In Exercises 25–30, find the distance between...Ch. 12.1 - In Exercises 25–30, find the distance between...Ch. 12.1 - Find the distance from the point (3, −4, 2) to...Ch. 12.1 - Find the distance from the point (−2, 1, 4) to...Ch. 12.1 - Find the distance from the point (4, 3, 0) to...Ch. 12.1 - Find the distance from the
x-axis to the plane z =...Ch. 12.1 - In Exercises 35–14, describe the given set with a...Ch. 12.1 - In Exercises 35–44, describe the given set with a...Ch. 12.1 - In Exercises 35–44, describe the given set with a...Ch. 12.1 - Prob. 38ECh. 12.1 - In Exercises 35–44, describe the given set with a...Ch. 12.1 - In Exercises 35–44, describe the given set with a...Ch. 12.1 - In Exercises 35–14, describe the given set with a...Ch. 12.1 - The set of points in space equidistant from the...Ch. 12.1 - In Exercises 35–44, describe the given set with a...Ch. 12.1 - In Exercises 35–44, describe the given set with a...Ch. 12.1 - Write inequalities to describe the sets in...Ch. 12.1 - Write inequalities to describe the sets in...Ch. 12.1 - Write inequalities to describe the sets in...Ch. 12.1 - Write inequalities to describe the sets in...Ch. 12.1 - Write inequalities to describe the sets in...Ch. 12.1 - Write inequalities to describe the sets in...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find the center C and the radius a for the sphere...Ch. 12.1 - Find equations for the sphere whose centers and...Ch. 12.1 - Find equations for the sphere whose centers and...Ch. 12.1 - Find equations for the sphere whose centers and...Ch. 12.1 - Prob. 64ECh. 12.1 - Find a formula for the distance from the point...Ch. 12.1 - Prob. 66ECh. 12.1 - Prob. 67ECh. 12.1 - Prob. 68ECh. 12.1 - Prob. 69ECh. 12.1 - Find an equation for the set of all points...Ch. 12.1 - Find the point on the sphere x2 + (y − 3)2 + (z +...Ch. 12.1 - Prob. 72ECh. 12.1 - Find an equation for the set of points equidistant...Ch. 12.1 - Find an equation for the set of points equidistant...Ch. 12.1 - Find an equation for the set of points equidistant...Ch. 12.1 - Find all points that simultaneously lie 3 units...Ch. 12.2 - In Exercises 1–8, let u = 〈3, −2〉 and v = 〈−2, 5〉....Ch. 12.2 - In Exercises 1–8, let u = 〈3, −2〉 and v = 〈−2, 5〉....Ch. 12.2 - In Exercises 1–8, let u = 〈3, −2〉 and v = 〈−2, 5〉....Ch. 12.2 - In Exercises 1–8, let u = 〈3, −2〉 and v = 〈−2, 5〉....Ch. 12.2 - In Exercises 1–8, let u = 〈3, −2〉 and v = 〈−2, 5〉....Ch. 12.2 - Prob. 6ECh. 12.2 - In Exercises 1–8, let u = 〈3, −2〉 and v = 〈−2, 5〉....Ch. 12.2 - In Exercises 1–8, let u = 〈3, −2〉 and v = 〈−2, 5〉....Ch. 12.2 - In Exercises 9–16, find the component form of the...Ch. 12.2 - In Exercises 9–16, find the component form of the...Ch. 12.2 - In Exercises 9–16, find the component form of the...Ch. 12.2 - In Exercises 9–16, find the component form of the...Ch. 12.2 - The unit vector that makes an angle θ = 2π/3 with...Ch. 12.2 - The unit vector that makes an angle θ = −3π/4 with...Ch. 12.2 - The unit vector obtained by rotating the vector ...Ch. 12.2 - The unit vector obtained by rotating the vector ...Ch. 12.2 - Prob. 17ECh. 12.2 - Prob. 18ECh. 12.2 - Prob. 19ECh. 12.2 - Prob. 20ECh. 12.2 - In Exercises 17–22, express each vector in the...Ch. 12.2 - Prob. 22ECh. 12.2 - In Exercises 23 and 24, copy vectors u, v, and w...Ch. 12.2 - In Exercises 23 and 24, copy vectors u, v, and w...Ch. 12.2 - Prob. 25ECh. 12.2 - Prob. 26ECh. 12.2 - Prob. 27ECh. 12.2 - Prob. 28ECh. 12.2 - In Exercises 25–30, express each vector as a...Ch. 12.2 - In Exercises 25–30, express each vector as a...Ch. 12.2 - Find the vectors whose lengths and directions are...Ch. 12.2 - Find the vectors whose lengths and directions are...Ch. 12.2 - Find a vector of magnitude 7 in the direction of v...Ch. 12.2 - Prob. 34ECh. 12.2 - In Exercises 35–38, find a. the direction of and...Ch. 12.2 - Prob. 36ECh. 12.2 - In Exercises 35–38, find a. the direction of and...Ch. 12.2 - In Exercises 35–38, find a. the direction of and...Ch. 12.2 - If = i + 4j − 2k and B is the point (5, 1, 3),...Ch. 12.2 - If = −7i + 3j + 8k and A is the point (−2, −3,...Ch. 12.2 - Linear combination Let u = 2i + j, v = i + j, and...Ch. 12.2 - Prob. 42ECh. 12.2 - Linear combination Let u = ⟨ 1, 2, 1 ⟩, v = ⟨ 1,...Ch. 12.2 - Linear combination Let u = ⟨1, 2, 2 ⟩, v = ⟨ 1,...Ch. 12.2 - Velocity An airplane is flying in the direction...Ch. 12.2 - (Continuation of Example 8.) What speed and...Ch. 12.2 - Prob. 47ECh. 12.2 - Consider a 50-N weight suspended by two wires as...Ch. 12.2 - Consider a w-N weight suspended by two wires as...Ch. 12.2 - Consider a 25-N weight suspended by two wires as...Ch. 12.2 - Location A bird flies from its nest 5 km in the...Ch. 12.2 - Use similar triangles to find the coordinates of...Ch. 12.2 - Prob. 53ECh. 12.2 - Prob. 54ECh. 12.2 - Let ABCD be a general, not necessarily planar,...Ch. 12.2 - Prob. 56ECh. 12.2 - Prob. 57ECh. 12.2 - Prob. 58ECh. 12.2 - Prob. 59ECh. 12.3 - Prob. 1ECh. 12.3 - 2. v = (3/5)i + (4/5)k, u = 5i + 12j
v · u, |v|,...Ch. 12.3 - Prob. 3ECh. 12.3 - Prob. 4ECh. 12.3 - 5. v = 5j – 3k, u = i + j + k
v · u, |v|, |u|
the...Ch. 12.3 - Prob. 6ECh. 12.3 - v = 5i + j,
v · u, | v |, | u |
the cosine of the...Ch. 12.3 -
v · u, | v |, | u |
the cosine of the angle...Ch. 12.3 - Find the angles between the vectors in Exercises...Ch. 12.3 - Find the angles between the vectors in Exercises...Ch. 12.3 - Find the angles between the vectors in Exercises...Ch. 12.3 - Find the angles between the vectors in Exercises...Ch. 12.3 - Prob. 13ECh. 12.3 - Rectangle Find the measures of the angles between...Ch. 12.3 - Direction angles and direction cosines The...Ch. 12.3 - Water main construction A water main is to be...Ch. 12.3 - For Exercises 17 and 18, find the acute angle...Ch. 12.3 - For Exercises 17 and 18, find the acute angle...Ch. 12.3 - Sums and differences In the accompanying figure,...Ch. 12.3 - Prob. 20ECh. 12.3 - Prob. 21ECh. 12.3 - Perpendicular diagonals Show that squares are the...Ch. 12.3 - Prob. 23ECh. 12.3 - Prob. 24ECh. 12.3 - Prob. 25ECh. 12.3 - Prob. 26ECh. 12.3 - Cauchy–Schwarz inequality Since u · v = |u| |v|...Ch. 12.3 - Prob. 28ECh. 12.3 - Prob. 29ECh. 12.3 - Cancelation in dot products In real-number...Ch. 12.3 - Prob. 31ECh. 12.3 - Prob. 32ECh. 12.3 - Prob. 33ECh. 12.3 - Prob. 34ECh. 12.3 - Prob. 35ECh. 12.3 - Prob. 36ECh. 12.3 - Prob. 37ECh. 12.3 - Prob. 38ECh. 12.3 - Prob. 39ECh. 12.3 - Prob. 40ECh. 12.3 - Prob. 41ECh. 12.3 - Prob. 42ECh. 12.3 - Prob. 43ECh. 12.3 - Locomotive The Union Pacific’s Big Boy locomotive...Ch. 12.3 - Prob. 45ECh. 12.3 - Prob. 46ECh. 12.3 -
Use this fact and the results of Exercise 33 or...Ch. 12.3 -
Use this fact and the results of Exercise 33 or...Ch. 12.3 - Prob. 49ECh. 12.3 - Prob. 50ECh. 12.3 - Prob. 51ECh. 12.3 - Prob. 52ECh. 12.4 - In Exercises 1–8, find the length and direction...Ch. 12.4 - In Exercises 1–8, find the length and direction...Ch. 12.4 - In Exercises 1–8, find the length and direction...Ch. 12.4 - In Exercises 1–8, find the length and direction...Ch. 12.4 - In Exercises 1–8, find the length and direction...Ch. 12.4 - In Exercises 1–8, find the length and direction...Ch. 12.4 - In Exercises 1–8, find the length and direction...Ch. 12.4 - In Exercises 1–8, find the length and direction...Ch. 12.4 - In Exercises 9–14, sketch the coordinate axes and...Ch. 12.4 - In Exercises 9–14, sketch the coordinate axes and...Ch. 12.4 - In Exercises 9–14, sketch the coordinate axes and...Ch. 12.4 - In Exercises 9–14, sketch the coordinate axes and...Ch. 12.4 - In Exercises 9–14, sketch the coordinate axes and...Ch. 12.4 - In Exercises 9–14, sketch the coordinate axes and...Ch. 12.4 - In Exercises 15−18,
Find the area of the triangle...Ch. 12.4 - In Exercises 15−18,
Find the area of the triangle...Ch. 12.4 - In Exercises 15−18,
Find the area of the triangle...Ch. 12.4 - In Exercises 15−18,
Find the area of the triangle...Ch. 12.4 - In Exercises 19–22, verify that (u × v) · w = (v ×...Ch. 12.4 - In Exercises 19–22, verify that (u × v) · w = (v ×...Ch. 12.4 - In Exercises 19–22, verify that (u × v) · w = (v ×...Ch. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.4 - In Exercises 25 and 26, find the magnitude of the...Ch. 12.4 - In Exercises 25 and 26, find the magnitude of the...Ch. 12.4 - Which of the following are always true, and which...Ch. 12.4 - Which of the following are always true, and which...Ch. 12.4 - Given nonzero vectors u, v, and w, use dot product...Ch. 12.4 - Compute (i × j) × j and i × (j × j). What can you...Ch. 12.4 - Let u, v, and w be vectors. Which of the following...Ch. 12.4 - Prob. 32ECh. 12.4 - Prob. 33ECh. 12.4 - Double cancelation If u ≠ 0 and if u × v = u × w...Ch. 12.4 - Find the areas of the parallelograms whose...Ch. 12.4 - Find the areas of the parallelograms whose...Ch. 12.4 - Find the areas of the parallelograms whose...Ch. 12.4 - Find the areas of the parallelograms whose...Ch. 12.4 - Find the areas of the parallelograms whose...Ch. 12.4 - Find the areas of the parallelograms whose...Ch. 12.4 - Find the areas of the triangles whose vertices are...Ch. 12.4 - Find the areas of the triangles whose vertices are...Ch. 12.4 - Find the areas of the triangles whose vertices are...Ch. 12.4 - Prob. 44ECh. 12.4 - Prob. 45ECh. 12.4 - Find the areas of the triangles whose vertices are...Ch. 12.4 - Find the areas of the triangles whose vertices are...Ch. 12.4 - Find the volume of a parallelepiped with one of...Ch. 12.4 - Triangle area Find a 2 × 2 determinant formula for...Ch. 12.4 - Prob. 50ECh. 12.4 - Using the methods of Section 6.1, where volume is...Ch. 12.4 - Prob. 52ECh. 12.4 - Prob. 53ECh. 12.4 - Prob. 54ECh. 12.4 - Prob. 55ECh. 12.4 - Prob. 56ECh. 12.4 - Prob. 57ECh. 12.5 - Find parametric equations for the lines in...Ch. 12.5 - Find parametric equations for the lines in...Ch. 12.5 - Find parametric equations for the lines in...Ch. 12.5 - Find parametric equations for the lines in...Ch. 12.5 - Find parametric equations for the lines in...Ch. 12.5 - Find parametric equations for the lines in...Ch. 12.5 - Prob. 7ECh. 12.5 - Find parametric equations for the lines in...Ch. 12.5 - Find parametric equations for the lines in...Ch. 12.5 - Prob. 10ECh. 12.5 - Prob. 11ECh. 12.5 - Prob. 12ECh. 12.5 - Find parametrizations for the line segments...Ch. 12.5 - Find parametrizations for the line segments...Ch. 12.5 - Find parametrizations for the line segments...Ch. 12.5 - Find parametrizations for the line segments...Ch. 12.5 - Prob. 17ECh. 12.5 - Find parametrizations for the line segments...Ch. 12.5 - Find parametrizations for the line segments...Ch. 12.5 - Find parametrizations for the line segments...Ch. 12.5 - Find equations for the planes in Exercises...Ch. 12.5 - Find equations for the planes in Exercises...Ch. 12.5 - Planes
Find equations for the planes in Exercises...Ch. 12.5 - Planes
Find equations for the planes in Exercises...Ch. 12.5 - Find equations for the planes in Exercises...Ch. 12.5 - Find equations for the planes in Exercises...Ch. 12.5 - Prob. 27ECh. 12.5 - Prob. 28ECh. 12.5 - In Exercises 29 and 30, find the plane containing...Ch. 12.5 - Prob. 30ECh. 12.5 - Find a plane through P0(2, 1, –1) and...Ch. 12.5 - Find a plane through the points P1(1, 2, 3), P2(3,...Ch. 12.5 - In Exercises 33–38, find the distance from the...Ch. 12.5 - In Exercises 33–38, find the distance from the...Ch. 12.5 - In Exercises 33–38, find the distance from the...Ch. 12.5 - In Exercises 33–38, find the distance from the...Ch. 12.5 - In Exercises 33–38, find the distance from the...Ch. 12.5 - In Exercises 33–38, find the distance from the...Ch. 12.5 - In Exercises 39–44, find the distance from the...Ch. 12.5 - In Exercises 39–44, find the distance from the...Ch. 12.5 - In Exercises 39–44, find the distance from the...Ch. 12.5 - In Exercises 39−44, find the distance from the...Ch. 12.5 - In Exercises 39−44, find the distance from the...Ch. 12.5 - In Exercises 39−44, find the distance from the...Ch. 12.5 - Find the distance from the plane x + 2y + 6z = 1...Ch. 12.5 - Find the distance from the line x = 2 + t, y = 1 +...Ch. 12.5 - Find the angles between the planes in Exercises 47...Ch. 12.5 - Find the angles between the planes in Exercises 47...Ch. 12.5 - Prob. 49ECh. 12.5 - Prob. 50ECh. 12.5 - Prob. 51ECh. 12.5 - Prob. 52ECh. 12.5 - Prob. 53ECh. 12.5 - Use a calculator to find the acute angles between...Ch. 12.5 - Prob. 55ECh. 12.5 - Use a calculator to find the acute angles between...Ch. 12.5 - In Exercises 57–60, find the point in which the...Ch. 12.5 - In Exercises 57–60, find the point in which the...Ch. 12.5 - In Exercises 57–60, find the point in which the...Ch. 12.5 - Prob. 60ECh. 12.5 - Prob. 61ECh. 12.5 - Find parametrizations for the lines in which the...Ch. 12.5 - Prob. 63ECh. 12.5 - Prob. 64ECh. 12.5 - Given two lines in space, either they are...Ch. 12.5 - Given two lines in space, either they are...Ch. 12.5 - Use Equations (3) to generate a parametrization of...Ch. 12.5 - Prob. 68ECh. 12.5 - Prob. 69ECh. 12.5 - Prob. 70ECh. 12.5 - Is the line x = 1 − 2t, y = 2 + 5t, z = −3t...Ch. 12.5 - Prob. 72ECh. 12.5 - Prob. 73ECh. 12.5 - Prob. 74ECh. 12.5 - Prob. 75ECh. 12.5 - Prob. 76ECh. 12.5 - Prob. 77ECh. 12.5 - Hidden lines in computer graphics Here is another...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - In Exercises 1–12, match the equation with the...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises 13–44.
Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises 13–44.
Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises 13-44.
x2...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Drawing
Sketch the surfaces in Exercises...Ch. 12.6 - Sketch the surfaces in Exercises 13−44.
39. x2 +...Ch. 12.6 - Prob. 40ECh. 12.6 - Sketch the surfaces in Exercises 13−44.
41. z =...Ch. 12.6 - Prob. 42ECh. 12.6 - Prob. 43ECh. 12.6 - Prob. 44ECh. 12.6 - Express the area A of the cross-section cut from...Ch. 12.6 - The barrel shown here is shaped like an ellipsoid...Ch. 12.6 - Prob. 47ECh. 12.6 - Prob. 48ECh. 12.6 - Prob. 49ECh. 12.6 - Prob. 50ECh. 12.6 - Prob. 51ECh. 12.6 - Prob. 52ECh. 12 - Prob. 1GYRCh. 12 - How are vectors added and subtracted...Ch. 12 - Prob. 3GYRCh. 12 - Prob. 4GYRCh. 12 - Prob. 5GYRCh. 12 - Prob. 6GYRCh. 12 - Prob. 7GYRCh. 12 - Prob. 8GYRCh. 12 - What geometric or physical interpretations do...Ch. 12 - Prob. 10GYRCh. 12 - Prob. 11GYRCh. 12 - Prob. 12GYRCh. 12 - Prob. 13GYRCh. 12 - Prob. 14GYRCh. 12 - Prob. 15GYRCh. 12 - Prob. 16GYRCh. 12 - Prob. 17GYRCh. 12 - Prob. 1PECh. 12 - Prob. 2PECh. 12 - Prob. 3PECh. 12 - Prob. 4PECh. 12 - Prob. 5PECh. 12 - Prob. 6PECh. 12 - Prob. 7PECh. 12 - The vector 5 units long in the direction opposite...Ch. 12 - Express the vectors in Exercises 9–12 in terms of...Ch. 12 - Prob. 10PECh. 12 - Prob. 11PECh. 12 - Prob. 12PECh. 12 - Prob. 13PECh. 12 - Prob. 14PECh. 12 - Prob. 15PECh. 12 - Prob. 16PECh. 12 - In Exercises 17 and 18, find |v|, |u|, , the angle...Ch. 12 - In Exercises 17 and 18, find |v|, |u|, , the angle...Ch. 12 - Prob. 19PECh. 12 - In Exercises 19 and 20, find projv u.
u = i − 2j
v...Ch. 12 - Prob. 21PECh. 12 - Prob. 22PECh. 12 - Prob. 23PECh. 12 - For what value or values of a will the vectors u =...Ch. 12 - In Exercises 25 and 26, find (a) the area of the...Ch. 12 - Prob. 26PECh. 12 - Suppose that n is normal to a plane and that v is...Ch. 12 - Find a vector in the plane parallel to the line ax...Ch. 12 - In Exercises 29 and 30, find the distance from the...Ch. 12 - Prob. 30PECh. 12 - Prob. 31PECh. 12 - Parametrize the line segment joining the points...Ch. 12 - In Exercises 33 and 34, find the distance from the...Ch. 12 - In Exercises 33 and 34, find the distance from the...Ch. 12 - Prob. 35PECh. 12 - Find an equation for the plane that passes through...Ch. 12 - In Exercises 37 and 38, find an equation for the...Ch. 12 - Prob. 38PECh. 12 - Prob. 39PECh. 12 - Prob. 40PECh. 12 - Prob. 41PECh. 12 - Prob. 42PECh. 12 - Prob. 43PECh. 12 - Show that the line in which the planes
x + 2y −...Ch. 12 - The planes 3x + 6z = 1 and 2x + 2y − z = 3...Ch. 12 - Find an equation for the plane that passes through...Ch. 12 - Prob. 47PECh. 12 - Prob. 48PECh. 12 - Find the distance from the point P(1, 4, 0) to the...Ch. 12 - Find the distance from the point (2, 2, 3) to the...Ch. 12 - Find a vector parallel to the plane 2x − y − z = 4...Ch. 12 - Prob. 52PECh. 12 - Prob. 53PECh. 12 - Prob. 54PECh. 12 - Prob. 55PECh. 12 - Prob. 56PECh. 12 - The line
intersects the plane x + 3y − z = −4...Ch. 12 - Show that for every real number k, the...Ch. 12 - Prob. 59PECh. 12 - Is the line related in any way to the plane ?...Ch. 12 - Prob. 61PECh. 12 - The parallelogram shown here has vertices at A(2,...Ch. 12 - Prob. 63PECh. 12 - Prob. 64PECh. 12 - Prob. 65PECh. 12 - Prob. 66PECh. 12 - Prob. 67PECh. 12 - Prob. 68PECh. 12 - Prob. 69PECh. 12 - Prob. 70PECh. 12 - Prob. 71PECh. 12 - Prob. 72PECh. 12 - Prob. 73PECh. 12 - Prob. 74PECh. 12 - Prob. 75PECh. 12 - Prob. 76PECh. 12 - Prob. 1AAECh. 12 - Prob. 2AAECh. 12 - Prob. 3AAECh. 12 - Prob. 4AAECh. 12 - Prob. 5AAECh. 12 - Prob. 6AAECh. 12 - Prob. 7AAECh. 12 - Prob. 8AAECh. 12 - Consider a regular tetrahedron of side length...Ch. 12 - Prob. 10AAECh. 12 - Prob. 11AAECh. 12 - Use vectors to show that the distance from to the...Ch. 12 - Prob. 13AAECh. 12 - Prob. 14AAECh. 12 - The projection of a vector on a plane Let P be a...Ch. 12 - The accompanying figure shows nonzero vectors v,...Ch. 12 - Prob. 17AAECh. 12 - Prob. 18AAECh. 12 - Prob. 19AAECh. 12 - Prob. 20AAECh. 12 - Prob. 21AAECh. 12 - Prob. 22AAECh. 12 - Prob. 23AAECh. 12 - Prob. 24AAECh. 12 - Prob. 25AAE
Knowledge Booster
Similar questions
- 2.6 Applications: Growth and Decay; Mathematics of Finances 1. A couple wants to have $50,000 in 5 years for a down payment on a new house. (a) How much should they deposit today, at 6.2% compounded quarterly, to have the required amount in 5 years? (b) How much interest will be earned? (c) If they can deposit only $30,000 now, how much more will they need to complete the $50,000 after 5 years? Note, this is not 50,000-P3.arrow_forwardThe graph of f(x) is given below. Select each true statement about the continuity of f(x) at x = 1. Select all that apply: ☐ f(x) is not continuous at x = 1 because it is not defined at x = 1. ☐ f(x) is not continuous at x = 1 because lim f(x) does not exist. x+1 ☐ f(x) is not continuous at x = 1 because lim f(x) ‡ f(1). x+→1 ☐ f(x) is continuous at x = 1.arrow_forwarda is done please show barrow_forward
- A homeware company has been approached to manufacture a cake tin in the shape of a "ghost" from the Pac-Man video game to celebrate the 45th Anniversary of the games launch. The base of the cake tin has a characteristic dimension / and is illustrated in Figure 1 below, you should assume the top and bottom of the shape can be represented by semi-circles. The vertical sides of the cake tin have a height of h. As the company's resident mathematician, you need to find the values of r and h that minimise the internal surface area of the cake tin given that the volume of the tin is Vfixed- 2r Figure 1 - Plan view of the "ghost" cake tin base. (a) Show that the Volume (V) of the cake tin as a function of r and his 2(+1)²h V = 2arrow_forward15. Please solve this and show each and every step please. PLEASE no chatgpt can I have a real person solve it please!! I am stuck. I am doing pratice problems and I do not even know where to start with this. The question is Please compute the indicated functional value.arrow_forwardUse a graph of f to estimate lim f(x) or to show that the limit does not exist. Evaluate f(x) near x = a to support your conjecture. Complete parts (a) and (b). x-a f(x)= 1 - cos (4x-4) 3(x-1)² ; a = 1 a. Use a graphing utility to graph f. Select the correct graph below.. A. W → ✓ Each graph is displayed in a [- 1,3] by [0,5] window. B. in ✓ ○ C. und ☑ Use the graphing utility to estimate lim f(x). Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x-1 ○ A. The limit appears to be approximately ☐ . (Round to the nearest tenth as needed.) B. The limit does not exist. b. Evaluate f(x) for values of x near 1 to support your conjecture. X 0.9 0.99 0.999 1.001 1.01 1.1 f(x) ○ D. + ☑ (Round to six decimal places as needed.) Does the table from the previous step support your conjecture? A. No, it does not. The function f(x) approaches a different value in the table of values than in the graph, after the approached values are rounded to the…arrow_forward
- x²-19x+90 Let f(x) = . Complete parts (a) through (c) below. x-a a. For what values of a, if any, does lim f(x) equal a finite number? Select the correct choice below and, if necessary, fill in the answer box to complete your choice. x→a+ ○ A. a= (Type an integer or a simplified fraction. Use a comma to separate answers as needed.) B. There are no values of a for which the limit equals a finite number. b. For what values of a, if any, does lim f(x) = ∞o? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. (Type integers or simplified fractions) C. There are no values of a that satisfy lim f(x) = ∞. + x-a c. For what values of a, if any, does lim f(x) = -∞0? Select the correct choice below and, if necessary, fill in the answer boxes to complete your choice. x→a+ A. Either a (Type integers or simplified fractions) B.arrow_forwardSketch a possible graph of a function f, together with vertical asymptotes, that satisfies all of the following conditions. f(2)=0 f(4) is undefined lim f(x)=1 X-6 lim f(x) = -∞ x-0+ lim f(x) = ∞ lim f(x) = ∞ x-4 _8arrow_forwardDetermine the following limit. lim 35w² +8w+4 w→∞ √49w+w³ 3 Select the correct choice below, and, if necessary, fill in the answer box to complete your choice. ○ A. lim W→∞ 35w² +8w+4 49w+w3 (Simplify your answer.) B. The limit does not exist and is neither ∞ nor - ∞.arrow_forwardCalculate the limit lim X-a x-a 5 using the following factorization formula where n is a positive integer and x-➡a a is a real number. x-a = (x-a) (x1+x-2a+x lim x-a X - a x-a 5 = n- + xa an-2 + an−1)arrow_forwardThe function s(t) represents the position of an object at time t moving along a line. Suppose s(1) = 116 and s(5)=228. Find the average velocity of the object over the interval of time [1,5]. The average velocity over the interval [1,5] is Vav = (Simplify your answer.)arrow_forwardFor the position function s(t) = - 16t² + 105t, complete the following table with the appropriate average velocities. Then make a conjecture about the value of the instantaneous velocity at t = 1. Time Interval Average Velocity [1,2] Complete the following table. Time Interval Average Velocity [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] [1,2] [1, 1.5] [1, 1.1] [1, 1.01] [1, 1.001] ப (Type exact answers. Type integers or decimals.) The value of the instantaneous velocity at t = 1 is (Round to the nearest integer as needed.)arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_iosRecommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning
Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSONCalculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning