Essential University Physics
4th Edition
ISBN: 9780134988559
Author: Wolfson, Richard
Publisher: Pearson Education,
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 12.3, Problem 12.3GI
The figure shows a person in static equilibrium leaning against a wall. Which of the following must be true? (a) There must be a frictional force at the wall but not necessarily at the floor. (b) There must be a frictional force at the floor but not necessarily at the wall. (c) There must be frictional forces at both floor and wall.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A toddler weighs 10 kg and raises herself onto tiptoe (on both feet). Her feet are 8 cm long with each ankle joint being located 4.5 cm from the point at which her feet contact the floor. While standing on tip toe: (a) what is the upward normal force exerted by the floor at the point at which one of the toddler’s feet contacts the floor? (b) what is the tension force in one of her Achilles tendons? (c) what is the downward force exerted on one of the toddler’s ankle joints?
One end of a regular ladder rests on the
ground and the other end on a vertical
wall. If the coefficients of friction for
the two ends of the scale are 0.6 (and
0.3)), respectively. The slope of the
ladder with the wall when it is about to
slide is:
-Tan-1 3/2 0
-Tan-1 30/3 0
-Tan-1 3/5
-Tan-1 3/3 0
A sandwich board advertising sign is constructed as shown. The sign’s mass is 8.00 kg. Even though the chain is broken and the hinge is frictionless, the board is able to stand without collapsing. What is the minimum coefficient of static friction between the sign and the sidewalk?
Chapter 12 Solutions
Essential University Physics
Ch. 12.1 - The figure shows three pairs of forces acting on...Ch. 12.2 - Prob. 12.2GICh. 12.3 - The figure shows a person in static equilibrium...Ch. 12.4 - Prob. 12.4GICh. 12 - Give an example of an object on which the net...Ch. 12 - Prob. 2FTDCh. 12 - Pregnant women often assume a posture with their...Ch. 12 - When you carry a bucket of water with one hand,...Ch. 12 - Is a ladder more likely to slip when you stand...Ch. 12 - Does choosing a pivot point in an equilibrium...
Ch. 12 - If you take the pivot point at the application...Ch. 12 - A short dog and a tall person are standing on a...Ch. 12 - Prob. 9FTDCh. 12 - A body is subject to three forces; F1=1i+2jN,...Ch. 12 - To demonstrate that the choice of pivot point...Ch. 12 - In Fig. 12.11 the forces shown all have the same...Ch. 12 - Figure 12.12a shows a thin, uniform square plate...Ch. 12 - Repeat the preceding problem for the equilateral...Ch. 12 - A 23-m-long log of irregular cross section lies...Ch. 12 - A 60-kg uniform board 2.4 m long is supported by a...Ch. 12 - Where should the child in Fig. 12.14 sit if the...Ch. 12 - A 4.2-m-long beam is supported by a cable at its...Ch. 12 - Figure 12.15 shows how a scale with a capacity of...Ch. 12 - A portion of a roller-coaster track is described...Ch. 12 - Prob. 21ECh. 12 - Prob. 22ECh. 12 - Prob. 23ECh. 12 - Example 12.2: Climbers attempting to cross a...Ch. 12 - Example 12.4: Consider the potential-energy curve...Ch. 12 - Prob. 27ECh. 12 - Prob. 28ECh. 12 - Youre a highway safety engineer, and youre asked...Ch. 12 - Figure 12.17a shows an outstretched arm with mass...Ch. 12 - A uniform sphere of radius R is supported by a...Ch. 12 - You work for a garden equipment company, and youre...Ch. 12 - Figure 12.20 shows the fool and lower leg of a...Ch. 12 - A uniform 5.0-kg ladder is leaning against a...Ch. 12 - The boom in the crane of Fig. 12.21 is free to...Ch. 12 - A uniform board of length L and weight W is...Ch. 12 - Figure 12.23 shows a 1250-kg car that has slipped...Ch. 12 - You are headwaiter at a new restaurant, and your...Ch. 12 - You are headwaiter at a new restaurant, and your...Ch. 12 - Prob. 41PCh. 12 - A crane in a marble quarry is mounted on the...Ch. 12 - A rectangular block measures w w L, where L is...Ch. 12 - The potential energy as a function of position for...Ch. 12 - A rectangular block of mass m measures w w L,...Ch. 12 - A 160-kg highway sign of uniform density is 2.3 m...Ch. 12 - Prob. 47PCh. 12 - Prob. 48PCh. 12 - A uniform, solid cube of mass m and side s is in...Ch. 12 - An isosceles triangular block of mass m and height...Ch. 12 - Youre investigating ladder safety for the Consumer...Ch. 12 - A 2.0-m-long rod has density in kilograms per...Ch. 12 - What horizontal force applied at its highest point...Ch. 12 - A rectangular block twice as high as it is wide is...Ch. 12 - What condition on the coefficient of friction in...Ch. 12 - A uniform solid cone of height h and base diameter...Ch. 12 - Prove the statement in Section 12.1 that the...Ch. 12 - Three identical books of length L are stacked over...Ch. 12 - A uniform pole of mass M is at rest on an incline...Ch. 12 - For what angle does the situation in Problem 53...Ch. 12 - Figure 12.31 shows a popular system for mounting...Ch. 12 - The nuchal ligament is a thick, cordlike structure...Ch. 12 - A 4.2-kg plant hangs from the bracket shown in...Ch. 12 - The wheel in Fig. 12.34 has mass M and is weighted...Ch. 12 - An interstellar spacecraft from an advanced...Ch. 12 - Prob. 66PCh. 12 - Engineers designing a new semiconductor device...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...Ch. 12 - Youve been hired by your states environmental...
Additional Science Textbook Solutions
Find more solutions based on key concepts
What is the difference between cellular respiration and external respiration?
Human Physiology: An Integrated Approach (8th Edition)
A solution contains an unknown mass of dissolved barium ions. When sodium sulfate is added to the solution, a w...
Introductory Chemistry (6th Edition)
5. When the phenotype of heterozygotes is intermediate between the phenotypes of the two homozygotes, this patt...
Biology: Life on Earth (11th Edition)
The following variances were calculated for two traits in a herd of hogs. (a) Calculate broad-sense (H2) and na...
Concepts of Genetics (12th Edition)
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
What type of unconformity separates layer G from layer F?
Applications and Investigations in Earth Science (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A 14.0 m uniform ladder weighing 480 N rests against a frictionless wall. The ladder makes a 55.0°-angle with the horizontal. (a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 4.10 m along the ladder from the bottom. horizontal force magnitude 342.35 direction vertical force magnitude direction towards the wall up m N ✪ N (b) If the ladder is just on the verge of slipping when the firefighter is 9.10 m from the bottom, what is the coefficient of static friction between ladder and ground? (c) What If? If oil is spilled on the ground, causing the coefficient of static friction to drop to half the value found in part (b), what is the maximum distance (in m) the firefighter can climb along the ladder from the bottom before the ladder slips?arrow_forwardA 14.0 m uniform ladder weighing 520 N rests against a frictionless wall. The ladder makes a 61.0°-angle with the horizontal. (a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 820-N firefighter has climbed 3.80 m along the ladder from the bottom. horizontal force magnitude N direction Select-- vertical force magnitude N direction Select--- v (b) If the ladder is just on the verge of slipping when the firefighter is 9.20 m from the bottom, what is the coefficient of static friction between ladder and ground? (c) What If? If oil is spilled on the ground, causing the coefficient of static friction to drop to half the value found in part (b), what is the maximum distance (in m) the firefighter can climb along the ladder from the bottom before the ladder slips? marrow_forwardOne end of a uniform meter stick is placed against a vertical wall. The other end is held by a lightweight cord that makes an angle 0 with the stick. The coefficient of static friction between the end of the meter stick and the wall is H, = 0.400. A. (2 points) What is the maximum value that 0 can have if the stick is to remain in equilibrium? Express your answer in degrees. B. (4 points) A block of the same weight as the meter stick is suspended from the stick at a distance x from the wall, as shown below. Assume that 0 =15.0° in this part of the problem. What is the minimum value of x for which the stick will remain in equilibrium? Answer: x > C. (4 points) When 0 =15.0°, how large must the coefficient of static friction be so that the block can be attached 0.100 [m] from the left end of the stick without causing it to slip? Answer: Hs 2arrow_forward
- A rectangular block twice as high as it is wide is resting on a board. The coefficient of static friction between board and incline is 0.63. If the board’s inclination angle is gradually increased, will the block first tip over or first begin sliding?arrow_forwardA 24 kg rectangular 4.00 m x 3.00 m rectangular sign is suspended from a horizontal 6.00 m long rod with a 5 kg mass as indicated in the figure. The left end of the rod is supported by a hinge, and the right end is supported by a thin cable making a 30.0° angle with the vertical. Draw a free body diagram and calculate the tension T in the cable. The thin cable breaks if it is pulled by more than 200 N. Show than in the present situation the cable can not support the sign without breaking. Show the cable is able to support the load if it is attached higher up such that it makes an angle of 20.0° angle S0.0 CE CREAM SHOP with the vertical.arrow_forwardYou are holding a bulletin board weighing 6.0 N in place against a wall while your friend secures it to the wall. To keep it from slipping, you apply a force perpen- dicular to the bulletin board, pressing it directly into the wall. How large must this force be if the coefficient of static friction with the wall is 0.407arrow_forward
- A 14.0 m uniform ladder weighing 520 N rests against a frictionless wall. The ladder makes a 65.0°-angle with the horizontal. (a) Find the horizontal and vertical forces (in N) the ground exerts on the base of the ladder when an 850-N firefighter has climbed 3.80 m along the ladder from the bottom. horizontal force magnitude direction N towards the wall vertical force magnitude direction up N (b) If the ladder is just on the verge of slipping when the firefighter is 9.40 m from the bottom, what is the coefficient of static friction between ladder and ground? (c) What If? If oil is spilled on the ground, causing the coefficient of static friction to drop to half the value found in part (b), what is the maximum distance (in m) the firefighter can climb along the ladder from the bottom before the ladder slips? marrow_forwardA 20 kg ladder leans against a vertical wall with an angle of 20°. Determine the static friction at the foot of the ladder.arrow_forwardA 12 ft long, 38 lb ladder leans against a frictionless wall. The coefficient of friction between the ladder and the ground, however, is 0.321. Can a 190 lb man walk up the ladder all the way? If not, how far up (m) can he climb before the ladder begins to slip? 60arrow_forward
- A cubical box is filled with sand and weighs 890 N. We wish to “roll" the box by pushing horizontally on one of the upper edges. What minimum coefficient of static friction between box and floor is required?arrow_forwardWhen a person stands on tiptoe (a strenuous position), the position of the foot is as shown in Figure a. The total is supported by the force n exerted by the floor on the toes of one foot. A mechanical gravitational force on the body, F model of the situation is shown in Figure b, where T is the force exerted by the Achilles tendon on the foot and R is the force exerted by the tibia on the foot. Find the values of T, R, and 0 when F, = n = 770 N. (For 0, enter the smaller of the g' two possible values between 0° and 90°.) -Achilles tendon Tibia 15.0° 18.0 cm 25.0 cm a T = R = N = Submit Answerarrow_forwardIf, when bent over, the hands are at a horizontal distance of 76.0 cm from the sacrum and the back muscles are at a horizontal distance of 44.0 cm from the sacrum and act at a 12.0° angle above the horizontal, what is the component of the force exerted by the back muscle that compresses the spine?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Static Equilibrium: concept; Author: Jennifer Cash;https://www.youtube.com/watch?v=0BIgFKVnlBU;License: Standard YouTube License, CC-BY