
University Calculus: Early Transcendentals (3rd Edition)
3rd Edition
ISBN: 9780321999580
Author: Joel R. Hass, Maurice D. Weir, George B. Thomas Jr.
Publisher: PEARSON
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 12.2, Problem 15E
To determine
Calculate the
Expert Solution & Answer

Trending nowThis is a popular solution!

Students have asked these similar questions
(7) (12 points) Let F(x, y, z) = (y, x+z cos yz, y cos yz).
Ꮖ
(a) (4 points) Show that V x F = 0.
(b) (4 points) Find a potential f for the vector field F.
(c) (4 points) Let S be a surface in R3 for which the Stokes' Theorem is valid. Use
Stokes' Theorem to calculate the line integral
Jos
F.ds;
as denotes the boundary of S. Explain your answer.
(3) (16 points) Consider
z = uv,
u = x+y,
v=x-y.
(a) (4 points) Express z in the form z = fog where g: R² R² and f: R² →
R.
(b) (4 points) Use the chain rule to calculate Vz = (2, 2). Show all intermediate
steps otherwise no credit.
(c) (4 points) Let S be the surface parametrized by
T(x, y) = (x, y, ƒ (g(x, y))
(x, y) = R².
Give a parametric description of the tangent plane to S at the point p = T(x, y).
(d) (4 points) Calculate the second Taylor polynomial Q(x, y) (i.e. the quadratic
approximation) of F = (fog) at a point (a, b). Verify that
Q(x,y) F(a+x,b+y).
=
(6) (8 points) Change the order of integration and evaluate
(z +4ry)drdy .
So S√ ²
0
Chapter 12 Solutions
University Calculus: Early Transcendentals (3rd Edition)
Ch. 12.1 - Motion in the Plane In Exercises 58, r(t) is the...Ch. 12.1 - Motion in the Plane
In Exercises 5–8, r(t) is the...Ch. 12.1 - In Exercises 58, r(t) is the position of a...Ch. 12.1 - In Exercises 5–8, r(t) is the position of a...Ch. 12.1 - Prob. 5ECh. 12.1 - Prob. 6ECh. 12.1 - Exercises 9–12 give the position vectors of...Ch. 12.1 - Prob. 8ECh. 12.1 - In Exercises 13–18, r(t) is the position of a...Ch. 12.1 - Prob. 10E
Ch. 12.1 - In Exercises 13–18, r(t) is the position of a...Ch. 12.1 - Prob. 12ECh. 12.1 - Prob. 13ECh. 12.1 - In Exercises 13–18, r(t) is the position of a...Ch. 12.1 - In Exercises 1922, r(t) is the position of a...Ch. 12.1 - In Exercises 19–22, r(t) is the position of a...Ch. 12.1 - In Exercises 19–22, r(t) is the position of a...Ch. 12.1 - Prob. 18ECh. 12.1 - As mentioned in the text, the tangent line to a...Ch. 12.1 - Prob. 20ECh. 12.1 - Tangents to Curves
As mentioned in the text, the...Ch. 12.1 - Prob. 22ECh. 12.1 - Motion along a circle Each of the following...Ch. 12.1 - Motion along a circle Show that the vector-valued...Ch. 12.1 - Prob. 25ECh. 12.1 - Motion along a cycloid A particle moves in the...Ch. 12.1 - Prob. 27ECh. 12.1 - Prob. 28ECh. 12.1 - Prob. 29ECh. 12.1 - Prob. 30ECh. 12.1 - Component test for continuity at a point Show that...Ch. 12.1 - Limits of cross products of vector functions...Ch. 12.1 - Differentiable vector functions are continuous...Ch. 12.1 - Constant Function Rule Prove that if u is the...Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
1.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
2.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
3.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
4.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
5.
Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
6.
Ch. 12.2 - Evaluate the integrals in Exercises 110. 7....Ch. 12.2 - Evaluate the integrals in Exercises 1–10.
8.
Ch. 12.2 - Prob. 9ECh. 12.2 - Prob. 10ECh. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Solve the initial value problems in Exercises...Ch. 12.2 - Prob. 16ECh. 12.2 - At time t = 0, a particle is located at the point...Ch. 12.2 - Prob. 18ECh. 12.2 - Prob. 19ECh. 12.2 - Range and height versus speed
Show that doubling a...Ch. 12.2 - Flight time and height A projectile is fired with...Ch. 12.2 - Prob. 22ECh. 12.2 - Prob. 23ECh. 12.2 - Beaming electrons An electron in a TV tube is...Ch. 12.2 - Prob. 25ECh. 12.2 - Finding muzzle speed Find the muzzle speed of a...Ch. 12.2 - Prob. 27ECh. 12.2 - Colliding marbles The accompanying figure shows an...Ch. 12.2 - Firing from (x0, y0) Derive the equations
(see...Ch. 12.2 - Where trajectories crest For a projectile fired...Ch. 12.2 - Prob. 31ECh. 12.2 - Prob. 32ECh. 12.2 - Prob. 33ECh. 12.2 - Products of scalar and vector functions Suppose...Ch. 12.2 - Prob. 35ECh. 12.2 - The Fundamental Theorem of Calculus The...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - Prob. 7ECh. 12.3 - In Exercises 1–8, find the curve’s unit tangent...Ch. 12.3 - Find the point on the curve
at a distance 26...Ch. 12.3 - Find the point on the curve
at a distance 13...Ch. 12.3 - In Exercises 11–14, find the arc length parameter...Ch. 12.3 - In Exercises 11–14, find the arc length parameter...Ch. 12.3 - In Exercises 11–14, find the arc length parameter...Ch. 12.3 - In Exercises 11–14, find the arc length parameter...Ch. 12.3 - Arc length Find the length of the curve
from (0,...Ch. 12.3 - Length of helix The length of the turn of the...Ch. 12.3 - Length is independent of parametrization To...Ch. 12.3 - The involute of a circle If a siring wound around...Ch. 12.3 - Prob. 20ECh. 12.3 - Distance along a line Show that if u is a unit...Ch. 12.3 - Prob. 22ECh. 12.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 12.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 12.4 - Find T, N, and for the plane curves in Exercises...Ch. 12.4 - Find T, N, and κ for the plane curves in Exercises...Ch. 12.4 - Prob. 5ECh. 12.4 - Prob. 6ECh. 12.4 - Prob. 7ECh. 12.4 - Prob. 8ECh. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Prob. 10ECh. 12.4 - Prob. 11ECh. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Find T, N, and κ for the space curves in Exercises...Ch. 12.4 - Prob. 16ECh. 12.4 - Show that the parabola , has its largest curvature...Ch. 12.4 - Show that the ellipse x = a cos t, y = b sin t, a...Ch. 12.4 - Prob. 19ECh. 12.4 - Prob. 20ECh. 12.4 - Prob. 21ECh. 12.4 - Prob. 22ECh. 12.4 - Prob. 23ECh. 12.4 - Prob. 24ECh. 12.4 - Prob. 25ECh. 12.4 - Prob. 26ECh. 12.4 - Prob. 27ECh. 12.4 - Prob. 28ECh. 12.5 - In Exercises 1 and 2, write a in the form a = aTT...Ch. 12.5 - In Exercises 1 and 2, write a in the form a = aTT...Ch. 12.5 - In Exercises 36, write a in the form a = aTT + aNN...Ch. 12.5 - Prob. 4ECh. 12.5 - In Exercises 3–6, write a in the form a = aTT +...Ch. 12.5 - In Exercises 3–6, write a in the form a = aTT +...Ch. 12.5 - In Exercises 7 and 8, find r, T, N, and B at the...Ch. 12.5 - Prob. 8ECh. 12.5 - The speedometer on your car reads a steady 35 mph....Ch. 12.5 - Prob. 10ECh. 12.5 - Can anything be said about the speed of a particle...Ch. 12.5 - An object of mass m travels along the parabola y =...Ch. 12.5 - Prob. 13ECh. 12.5 - Prob. 14ECh. 12.5 - Prob. 15ECh. 12.5 - Prob. 16ECh. 12.6 - Prob. 1ECh. 12.6 - Prob. 2ECh. 12.6 - Prob. 3ECh. 12.6 - Prob. 4ECh. 12.6 - Prob. 5ECh. 12.6 - Prob. 6ECh. 12.6 - Prob. 7ECh. 12.6 - Prob. 8ECh. 12.6 - Prob. 9ECh. 12.6 - Prob. 10ECh. 12.6 - Prob. 11ECh. 12.6 - Prob. 12ECh. 12.6 - Prob. 13ECh. 12.6 - Prob. 14ECh. 12.6 - Prob. 15ECh. 12.6 - Prob. 16ECh. 12 - Prob. 1GYRCh. 12 - Prob. 2GYRCh. 12 - Prob. 3GYRCh. 12 - Prob. 4GYRCh. 12 - Prob. 5GYRCh. 12 - Prob. 6GYRCh. 12 - Prob. 7GYRCh. 12 - Prob. 8GYRCh. 12 - Prob. 9GYRCh. 12 - Prob. 10GYRCh. 12 - Prob. 11GYRCh. 12 - Prob. 12GYRCh. 12 - Prob. 13GYRCh. 12 - In Exercises 1 and 2, graph the curves and sketch...Ch. 12 - Prob. 2PECh. 12 - Prob. 3PECh. 12 - Prob. 4PECh. 12 - Prob. 5PECh. 12 - Prob. 6PECh. 12 - Prob. 7PECh. 12 - Prob. 8PECh. 12 - Prob. 9PECh. 12 - Prob. 10PECh. 12 - Prob. 11PECh. 12 - Prob. 12PECh. 12 - Prob. 13PECh. 12 - Prob. 14PECh. 12 - Prob. 15PECh. 12 - Prob. 16PECh. 12 - Prob. 17PECh. 12 - Prob. 18PECh. 12 - Prob. 19PECh. 12 - In Exercises 17-20, find T, N, B, and k at the...Ch. 12 - Prob. 21PECh. 12 - Prob. 22PECh. 12 - Prob. 23PECh. 12 - Prob. 24PECh. 12 - Prob. 25PECh. 12 - Find equations for the osculating, normal, and...Ch. 12 - Find parametric equations for the line that is...Ch. 12 - Prob. 28PECh. 12 - Prob. 29PECh. 12 - Prob. 30PECh. 12 - Prob. 1AAECh. 12 - Suppose the curve in Exercise 1 is replaced by the...Ch. 12 - Prob. 3AAECh. 12 - Prob. 4AAECh. 12 - Prob. 5AAECh. 12 - Prob. 6AAECh. 12 - Prob. 7AAECh. 12 - Prob. 8AAE
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, calculus and related others by exploring similar questions and additional content below.Similar questions
- (10) (16 points) Let R>0. Consider the truncated sphere S given as x² + y² + (z = √15R)² = R², z ≥0. where F(x, y, z) = −yi + xj . (a) (8 points) Consider the vector field V (x, y, z) = (▼ × F)(x, y, z) Think of S as a hot-air balloon where the vector field V is the velocity vector field measuring the hot gasses escaping through the porous surface S. The flux of V across S gives the volume flow rate of the gasses through S. Calculate this flux. Hint: Parametrize the boundary OS. Then use Stokes' Theorem. (b) (8 points) Calculate the surface area of the balloon. To calculate the surface area, do the following: Translate the balloon surface S by the vector (-15)k. The translated surface, call it S+ is part of the sphere x² + y²+z² = R². Why do S and S+ have the same area? ⚫ Calculate the area of S+. What is the natural spherical parametrization of S+?arrow_forward(1) (8 points) Let c(t) = (et, et sint, et cost). Reparametrize c as a unit speed curve starting from the point (1,0,1).arrow_forward(9) (16 points) Let F(x, y, z) = (x² + y − 4)i + 3xyj + (2x2 +z²)k = - = (x²+y4,3xy, 2x2 + 2²). (a) (4 points) Calculate the divergence and curl of F. (b) (6 points) Find the flux of V x F across the surface S given by x² + y²+2² = 16, z ≥ 0. (c) (6 points) Find the flux of F across the boundary of the unit cube E = [0,1] × [0,1] x [0,1].arrow_forward
- (8) (12 points) (a) (8 points) Let C be the circle x² + y² = 4. Let F(x, y) = (2y + e²)i + (x + sin(y²))j. Evaluate the line integral JF. F.ds. Hint: First calculate V x F. (b) (4 points) Let S be the surface r² + y² + z² = 4, z ≤0. Calculate the flux integral √(V × F) F).dS. Justify your answer.arrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. a = 13, b = 15, C = 68° Law of Sines Law of Cosines Then solve the triangle. (Round your answers to four decimal places.) C = 15.7449 A = 49.9288 B = 62.0712 × Need Help? Read It Watch Itarrow_forward(4) (10 points) Evaluate √(x² + y² + z²)¹⁄² exp[}(x² + y² + z²)²] dV where D is the region defined by 1< x² + y²+ z² ≤4 and √√3(x² + y²) ≤ z. Note: exp(x² + y²+ 2²)²] means el (x²+ y²+=²)²]¸arrow_forward
- (2) (12 points) Let f(x,y) = x²e¯. (a) (4 points) Calculate Vf. (b) (4 points) Given x directional derivative 0, find the line of vectors u = D₁f(x, y) = 0. (u1, 2) such that the - (c) (4 points) Let u= (1+3√3). Show that Duƒ(1, 0) = ¦|▼ƒ(1,0)| . What is the angle between Vf(1,0) and the vector u? Explain.arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a b 29 39 66.50 C 17.40 d 0 54.0 126° a Ꮎ b darrow_forward(5) (10 points) Let D be the parallelogram in the xy-plane with vertices (0, 0), (1, 1), (1, 1), (0, -2). Let f(x,y) = xy/2. Use the linear change of variables T(u, v)=(u,u2v) = (x, y) 1 to calculate the integral f(x,y) dA= 0 ↓ The domain of T is a rectangle R. What is R? |ǝ(x, y) du dv. |ð(u, v)|arrow_forward
- 2 Anot ined sove in peaper PV+96252 Q3// Find the volume of the region between the cylinder z = y2 and the xy- plane that is bounded by the planes x=1, x=2,y=-2,andy=2. vertical rect a Q4// Draw and Evaluate Soxy-2sin (ny2)dydx D Lake tarrow_forwardDetermine whether the Law of Sines or the Law of Cosines can be used to find another measure of the triangle. B 13 cm 97° Law of Sines Law of Cosines A 43° Then solve the triangle. (Round your answers to two decimal places.) b = x C = A = 40.00arrow_forwardFind the missing values by solving the parallelogram shown in the figure. (The lengths of the diagonals are given by c and d. Round your answers to two decimal places.) a 29 b 39 d Ꮎ 126° a Ꮎ b darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning

Calculus: Early Transcendentals
Calculus
ISBN:9781285741550
Author:James Stewart
Publisher:Cengage Learning

Thomas' Calculus (14th Edition)
Calculus
ISBN:9780134438986
Author:Joel R. Hass, Christopher E. Heil, Maurice D. Weir
Publisher:PEARSON

Calculus: Early Transcendentals (3rd Edition)
Calculus
ISBN:9780134763644
Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric Schulz
Publisher:PEARSON

Calculus: Early Transcendentals
Calculus
ISBN:9781319050740
Author:Jon Rogawski, Colin Adams, Robert Franzosa
Publisher:W. H. Freeman


Calculus: Early Transcendental Functions
Calculus
ISBN:9781337552516
Author:Ron Larson, Bruce H. Edwards
Publisher:Cengage Learning
01 - What Is A Differential Equation in Calculus? Learn to Solve Ordinary Differential Equations.; Author: Math and Science;https://www.youtube.com/watch?v=K80YEHQpx9g;License: Standard YouTube License, CC-BY
Higher Order Differential Equation with constant coefficient (GATE) (Part 1) l GATE 2018; Author: GATE Lectures by Dishank;https://www.youtube.com/watch?v=ODxP7BbqAjA;License: Standard YouTube License, CC-BY
Solution of Differential Equations and Initial Value Problems; Author: Jefril Amboy;https://www.youtube.com/watch?v=Q68sk7XS-dc;License: Standard YouTube License, CC-BY