Iodomethane (CH 3 I) is a commonly used reagent in organic chemistry . When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethane’s ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data: [DNA] 0 ( μ mol/L) [CH 3 I] 0 ( μ mol/L) Initial Rate ( μ mol/L·s) 0.100 0.100 3.20 × 10 −4 0.100 0.200 6.40 × 10 −4 0.200 0.200 1.28 × 10 −3 Which of the following could be a possible mechanism to explain the initial rate data? Mechanism I DNA+CH 3 I → DNA — CH 3 + + I − Mechanism II CH 3 I → CH 3 + + I − S l o w DNA+CH 3 + → DNA — CH 3 + F a s t
Iodomethane (CH 3 I) is a commonly used reagent in organic chemistry . When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethane’s ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data: [DNA] 0 ( μ mol/L) [CH 3 I] 0 ( μ mol/L) Initial Rate ( μ mol/L·s) 0.100 0.100 3.20 × 10 −4 0.100 0.200 6.40 × 10 −4 0.200 0.200 1.28 × 10 −3 Which of the following could be a possible mechanism to explain the initial rate data? Mechanism I DNA+CH 3 I → DNA — CH 3 + + I − Mechanism II CH 3 I → CH 3 + + I − S l o w DNA+CH 3 + → DNA — CH 3 + F a s t
Solution Summary: The author explains how the rate of a chemical reaction depends on the concentration of reactants.
Iodomethane (CH3I) is a commonly used reagent in organic chemistry. When used properly, this reagent allows chemists to introduce methyl groups in many different useful applications. The chemical does pose a risk as a carcinogen, possibly owing to iodomethane’s ability to react with portions of the DNA strand (if they were to come in contact). Consider the following hypothetical initial rates data:
[DNA]0
(μ mol/L)
[CH3I]0
(μ mol/L)
Initial Rate (μmol/L·s)
0.100
0.100
3.20 × 10−4
0.100
0.200
6.40 × 10−4
0.200
0.200
1.28 × 10−3
Which of the following could be a possible mechanism to explain the initial rate data?
Mechanism
I
DNA+CH
3
I
→
DNA
—
CH
3
+
+
I
−
Mechanism
II
CH
3
I
→
CH
3
+
+
I
−
S
l
o
w
DNA+CH
3
+
→
DNA
—
CH
3
+
F
a
s
t
Definition Definition Transformation of a chemical species into another chemical species. A chemical reaction consists of breaking existing bonds and forming new ones by changing the position of electrons. These reactions are best explained using a chemical equation.
1. Calculate the accurate monoisotopic mass (using all 1H, 12C, 14N, 160 and 35CI) for your product using the table in
your lab manual. Don't include the Cl, since you should only have [M+H]*. Compare this to the value you see on
the LC-MS printout. How much different are they?
2. There are four isotopic peaks for the [M+H]* ion at m/z 240, 241, 242 and 243. For one point of extra credit,
explain what each of these is and why they are present.
3. There is a fragment ion at m/z 184. For one point of extra credit, identify this fragment and confirm by
calculating the accurate monoisotopic mass.
4. The UV spectrum is also at the bottom of your printout. For one point of extra credit, look up the UV spectrum
of bupropion on Google Images and compare to your spectrum. Do they match? Cite your source.
5. For most of you, there will be a second chromatographic peak whose m/z is 74 (to a round number). For one
point of extra credit, see if you can identify this molecule as well and confirm by…
Please draw, not just describe!
can you draw each step on a piece of a paper please this is very confusing to me
Biology: Life on Earth with Physiology (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.