Risk Premiums [LO2, 3] Refer to Table 12.1 in the text and look at the period from 1970 through 1975.
a. Calculate the arithmetic average returns for large-company stocks and T-bills over this period.
b. Calculate the standard deviation of the returns for large-company stocks and T-bills over this period.
c. Calculate the observed risk premium in each year for the large-company stocks versus the T-bills. What was the average risk premium over this period? What was the standard deviation of the risk premium over this period?
d. Is it possible for the risk premium to be negative before an investment is undertaken? Can the risk premium be negative after the fact? Explain.
a)
To determine: The arithmetic average for large-company stocks and Treasury bills.
Introduction:
Arithmetic average return refers to the returns that an investment earns in an average year over different periods.
Answer to Problem 8QP
The arithmetic average of large company stocks is 5.55 percent, and the arithmetic average of Treasury bills is 6.04 percent.
Explanation of Solution
Given information:
Refer to Table 12.1 in the chapter. Extract the data for large-company stocks and Treasury bills from 1970 to 1975 as follows:
Year | Large Company Stock Return | Treasury Bill Return | Risk Premium |
1970 | 3.94% | 6.50% | −2.56% |
1971 | 14.30% | 4.36% | 9.94% |
1972 | 18.99% | 4.23% | 14.76% |
1973 | –14.69% | 7.29% | –21.98% |
1974 | –26.47% | 7.99% | –34.46% |
1975 | 37.23% | 5.87% | 31.36% |
Total | 33.30% | 36.24% | –2.94% |
The formula to calculate the arithmetic average return:
Where,
“Xi” refers to each of the observations from X1 to XN (as “i” goes from 1 to “N”)
“N” refers to the number of observations
Compute the arithmetic average for Large-company stocks:
The total of observations is 33.30%. There are 6 observations.
Hence, the arithmetic average of large-company stocks is 5.55 percent.
Compute the arithmetic average for Treasury bill return:
The total of observations is 36.24%. There are 6 observations.
Hence, the arithmetic average of Treasury bills is 6.04 percent.
b)
To determine: The standard deviation of large-company stocks and Treasury bills.
Introduction:
Standard deviation refers to the deviation of the observations from the mean.
Answer to Problem 8QP
The standard deviation of large-company stocks is 23.23 percent, and the standard deviation of Treasury bills is 1.53 percent.
Explanation of Solution
Given information:
Refer to Table 12.1 in the chapter. Extract the data for large-company stocks and Treasury bills from 1970 to 1975 as follows:
Year | Large Company Stock Return | Treasury Bill Return | Risk Premium |
1970 | 3.94% | 6.50% | −2.56% |
1971 | 14.30% | 4.36% | 9.94% |
1972 | 18.99% | 4.23% | 14.76% |
1973 | –14.69% | 7.29% | –21.98% |
1974 | –26.47% | 7.99% | –34.46% |
1975 | 37.23% | 5.87% | 31.36% |
Total | 33.30% | 36.24% | –2.94% |
The formula to calculate the standard deviation:
Where,
“SD (R)” refers to the variance
“X̅” refers to the arithmetic average
“Xi” refers to each of the observations from X1 to XN (as “i” goes from 1 to “N”)
“N” refers to the number of observations
Compute the squared deviations of large company stocks:
Large company stocks | |||
Actual return (A) | Average return (B) | Deviation (A)–(B)=(C) | Squared deviation (C)2 |
0.0394 | 0.0555 | -0.0161 | 0.00026 |
0.1430 | 0.0555 | 0.0875 | 0.00766 |
0.1899 | 0.0555 | 0.1344 | 0.01806 |
-0.1469 | 0.0555 | -0.2024 | 0.04097 |
-0.2647 | 0.0555 | -0.3202 | 0.10253 |
0.3723 | 0.0555 | 0.3168 | 0.10036 |
Total of squared deviation | 0.26983 |
Compute the standard deviation:
Hence, the standard deviation of Large company stocks is 23.23 percent.
Compute the squared deviations of Treasury bill:
Treasury bills | |||
Actual return (A) | Average return (B) | Deviation (A)–(B)=(C) | Squared deviation (C)2 |
0.065 | 0.0604 | 0.0046 | 0.00002116 |
0.0436 | 0.0604 | -0.0168 | 0.00028224 |
0.0423 | 0.0604 | -0.0181 | 0.00032761 |
0.0729 | 0.0604 | 0.0125 | 0.00015625 |
0.0799 | 0.0604 | 0.0195 | 0.00038025 |
0.0587 | 0.0604 | -0.0017 | 0.00000289 |
Total of squared deviation
| 0.0011704 |
Compute the standard deviation:
Hence, the standard deviation of Treasury bills is 1.53 percent.
c)
To determine: The arithmetic average and the standard deviation of observed risk premium.
Introduction:
Arithmetic average return refers to the returns that an investment earns in an average year over different periods. Standard deviation refers to the deviation of the observations from the mean.
Answer to Problem 8QP
The arithmetic average is (0.49 percent), and the standard deviation is 25.42 percent.
Explanation of Solution
Given information:
Refer to Table 12.1 in the chapter. Extract the data for large-company stocks and Treasury bills from 1970 to 1975 as follows:
Year | Large Company Stock Return | Treasury Bill Return | Risk Premium |
1970 | 3.94% | 6.50% | −2.56% |
1971 | 14.30% | 4.36% | 9.94% |
1972 | 18.99% | 4.23% | 14.76% |
1973 | –14.69% | 7.29% | –21.98% |
1974 | –26.47% | 7.99% | –34.46% |
1975 | 37.23% | 5.87% | 31.36% |
Total | 33.30% | 36.24% | –2.94% |
The formula to calculate the arithmetic average return:
Where,
“Xi” refers to each of the observations from X1 to XN (as “i” goes from 1 to “N”)
“N” refers to the number of observations
The formula to calculate the standard deviation:
Where,
“SD (R)” refers to the variance
“X̅” refers to the arithmetic average
“Xi” refers to each of the observations from X1 to XN (as “i” goes from 1 to “N”)
“N” refers to the number of observations
Compute the arithmetic average for risk premium:
The total of observations is (2.94%). There are 6 observations.
Hence, the arithmetic average of risk premium is (0.49 percent).
Compute the squared deviations of risk premium:
Risk premium | |||
Actual return (A) | Average return (B) | Deviation (A)–(B)=(C) | Squared deviation (C)2 |
-0.0256 | 0.0604 | -0.086 | 0.0074 |
0.0994 | 0.0604 | 0.039 | 0.00152 |
0.1476 | 0.0604 | 0.0872 | 0.0076 |
-0.2198 | 0.0604 | -0.2802 | 0.07851 |
-0.3446 | 0.0604 | -0.405 | 0.16403 |
0.3136 | 0.0604 | 0.2532 | 0.06411 |
Total of squared deviation | 0.32317 |
Compute the standard deviation:
Hence, the standard deviation of risk premium is 25.42 percent.
d)
To determine: Whether the risk premium can be negative before and after investment.
Explanation of Solution
The risk premium cannot be negative before investment because investors require compensation for assuming the risk. They will invest if the stock compensates for the risk. The risk premium can be negative after investment if the nominal returns are very low when compared to the risk-free returns.
Want to see more full solutions like this?
Chapter 12 Solutions
Fundamentals of Corporate Finance
- General Financearrow_forwardAs CFO for Everything.Com, you are shopping for 6,000 square feet of usable office space for 25 of your employees in Center City, USA. A leasing broker shows you space in Apex Atrium, a 10-story multitenanted office building. This building contains 360,000 square feet of gross building area. A total of 54,000 square feet is interior space and is nonrentable. The nonrentable space consists of areas contained in the basement, elevator core, and other mechanical and structural components. An additional 36,000 square feet of common area is the lobby area usable by all tenants. The 6,000 square feet of usable area that you are looking for is on the seventh floor, which contains 33,600 square feet of rentable area, and is leased by other tenants who occupy a combined total of 24,000 square feet of usable space. The leasing broker indicated that base rents will be $30 per square foot of rentable area Required: a. Calculate total rentable area in the building as though it would be rented to…arrow_forwardDon't used Ai solutionarrow_forward
- General Finance Questionarrow_forwardConsider the following simplified financial statements for the Yoo Corporation (assuming no income taxes): Income Statement Balance Sheet Sales Costs $ 40,000 Assets 34,160 $26,000 Debt Equity $ 7,000 19,000 Net income $ 5,840 Total $26,000 Total $26,000 The company has predicted a sales increase of 20 percent. Assume Yoo pays out half of net income in the form of a cash dividend. Costs and assets vary with sales, but debt and equity do not. Prepare the pro forma statements. (Input all amounts as positive values. Do not round intermediate calculations and round your answers to the nearest whole dollar amount.) Pro forma income statement Sales Costs $ 48000 40992 Assets $ 31200 Pro forma balance sheet Debt 7000 Equity 19000 Net income $ 7008 Total $ 31200 Total 30304 What is the external financing needed? (Do not round intermediate calculations. Negative amount should be indicated by a minus sign.) External financing needed $ 896arrow_forwardAn insurance company has liabilities of £7 million due in 10 years' time and £9 million due in 17 years' time. The assets of the company consist of two zero-coupon bonds, one paying £X million in 7 years' time and the other paying £Y million in 20 years' time. The current interest rate is 6% per annum effective. Find the nominal value of X (i.e. the amount, IN MILLIONS, that bond X pays in 7 year's time) such that the first two conditions for Redington's theory of immunisation are satisfied. Express your answer to THREE DECIMAL PLACES.arrow_forward
- An individual is investing in a market where spot rates and forward rates apply. In this market, if at time t=0 he agrees to invest £5.3 for two years, he will receive £7.4 at time t=2 years. Alternatively, if at time t=0 he agrees to invest £5.3 at time t=1 for either one year or two years, he will receive £7.5 or £7.3 at times t=2 and t=3, respectively. Calculate the price per £5,000 nominal that the individual should pay for a fixed-interest bond bearing annual interest of 6.6% and is redeemable after 3 years at 110%. State your answer at 2 decimal places.arrow_forwardThe one-year forward rates of interest, f+, are given by: . fo = 5.06%, f₁ = 6.38%, and f2 = 5.73%. Calculate, to 4 decimal places (in percentages), the three-year par yield.arrow_forward1. Give one new distribution channels for Virtual Assistance (freelance business) that is not commonly used. - show a chart/diagram to illustrate the flow of the distribution channels. - explain the rationale behind it. (e.g., increased market reach, improved customer experience, cost-efficiency). - connect the given distribution channel to the marketing mix: (How does it align with the overall marketing strategy? Consider product, price, promotion, and place.). - define the target audience: (Age, gender, location, interests, etc.). - lastly, identify potential participants: (Wholesalers, retailers, online platforms, etc.)arrow_forward
- Essentials Of InvestmentsFinanceISBN:9781260013924Author:Bodie, Zvi, Kane, Alex, MARCUS, Alan J.Publisher:Mcgraw-hill Education,
- Foundations Of FinanceFinanceISBN:9780134897264Author:KEOWN, Arthur J., Martin, John D., PETTY, J. WilliamPublisher:Pearson,Fundamentals of Financial Management (MindTap Cou...FinanceISBN:9781337395250Author:Eugene F. Brigham, Joel F. HoustonPublisher:Cengage LearningCorporate Finance (The Mcgraw-hill/Irwin Series i...FinanceISBN:9780077861759Author:Stephen A. Ross Franco Modigliani Professor of Financial Economics Professor, Randolph W Westerfield Robert R. Dockson Deans Chair in Bus. Admin., Jeffrey Jaffe, Bradford D Jordan ProfessorPublisher:McGraw-Hill Education